scholarly journals Evidence for skipped spawning in a potamodromous cyprinid, humpback chub (Gila cypha), with implications for demographic parameter estimates

2015 ◽  
Vol 170 ◽  
pp. 50-59 ◽  
Author(s):  
Kristen Nicole Pearson ◽  
William Louis Kendall ◽  
Dana Leonard Winkelman ◽  
William Riley Persons
2017 ◽  
Vol 8 (1) ◽  
pp. 333-342 ◽  
Author(s):  
Forest P. Hayes ◽  
Michael J. Dodrill ◽  
Brandon S. Gerig ◽  
Colton Finch ◽  
William E. Pine III

Abstract Determining the population status of endangered Humpback Chub Gila cypha is a major component of the adaptive management program designed to inform operation of Glen Canyon Dam upstream from Grand Canyon, Arizona. In recent decades, resource managers have identified a portfolio of management actions (with intermittent implementation) to promote population recovery of Humpback Chub, including nonnative fish removal, changes in water release volumes and discharge ramping schedules, and reductions in hydropower peaking operations. The Humpback Chub population in Grand Canyon has increased over this same period, causal factors for which are unclear. We took advantage of unusual hydrology in the Colorado River basin in 2011 to assess trends in juvenile Humpback Chub length–weight relationships and condition in the Colorado River below Glen Canyon Dam as well as in the unregulated Little Colorado River. Within each river, we observed higher length–weight b-parameter estimates (exponent of the standard power equation) at higher water temperatures. We also found higher slope estimates for the length–weight relationship at higher temperatures in the Little Colorado River. Slope estimates were more variable in the Colorado River, where mean water temperatures were more uniform. The next step is to examine whether Humpback Chub length–weight relationships influence population metrics such as abundance or survival. If these relationships exist, then monitoring condition in juvenile Humpback Chub would provide a quick and low-cost technique for assessing population response to planned management experiments or changing environmental conditions.


PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e60389 ◽  
Author(s):  
Deborah Pardo ◽  
Henri Weimerskirch ◽  
Christophe Barbraud

2001 ◽  
Vol 58 (8) ◽  
pp. 1557-1568 ◽  
Author(s):  
J P Kritzer ◽  
C R Davies ◽  
B D Mapstone

We examined precision of size, age, growth, and mortality parameters for four reef fishes at sample sizes ranging from 25 to 1000 using bootstrapped population samples. The results are illustrative rather than prescriptive in that we do not determine "optimum" sample sizes, but rather describe improvements in precision with increasing sample size. Furthermore, we do not address the related issue of accuracy. In general, a sample size needed to be tripled to halve precision at that sample size. Mean lengths and ages were most precise, reaching 10% by a sample size of 75 for all species. von Bertalanffy growth parameters were up to an order of magnitude more precise when constraints were placed upon the fitting process. Asymptotic lengths, L[Formula: see text], were up to eight times as precise as Brody growth coefficients, K. Catch curves were generally less precise than two other mortality estimators, but we cannot advocate any estimator until accuracy is addressed. We propose a general rule of collecting an average of 7–10 fish per age-class to estimate a variety of parameters. However, we more strongly suggest applying similar analyses for focal species and, where possible, with consideration of the application of parameters (e.g., sensitivity analyses).


The Condor ◽  
2007 ◽  
Vol 109 (4) ◽  
pp. 949-954 ◽  
Author(s):  
Larkin A. Powell

Abstract Avian biologists routinely estimate sampling variance for parameter estimates such as daily nest survival, fecundity, annual survival, and density. However, many biologists are not certain of methods to derive sampling variance for parameters when survival rates change temporal scales. Similar methods are needed to obtain sampling variance when biologists combine parameter estimates to calculate an indirect demographic parameter, such as population growth rate. The delta method is a useful technique for approximating sampling variance when the desired demographic parameter is a function of at least one other demographic parameter. However, the delta method is rarely taught in most graduate-level biology or ecology courses, and application of this method may be discouraged by seemingly daunting formulas in reference books. Here, I provide five examples of sampling variance approximations for common situations encountered by avian ecologists, with step-by-step explanations of the equations involved.


2014 ◽  
Vol 23 (11) ◽  
pp. 2781-2800 ◽  
Author(s):  
K. A. Lee ◽  
C. Huveneers ◽  
O. Gimenez ◽  
V. Peddemors ◽  
R. G. Harcourt

1999 ◽  
Vol 15 (2) ◽  
pp. 91-98 ◽  
Author(s):  
Lutz F. Hornke

Summary: Item parameters for several hundreds of items were estimated based on empirical data from several thousands of subjects. The logistic one-parameter (1PL) and two-parameter (2PL) model estimates were evaluated. However, model fit showed that only a subset of items complied sufficiently, so that the remaining ones were assembled in well-fitting item banks. In several simulation studies 5000 simulated responses were generated in accordance with a computerized adaptive test procedure along with person parameters. A general reliability of .80 or a standard error of measurement of .44 was used as a stopping rule to end CAT testing. We also recorded how often each item was used by all simulees. Person-parameter estimates based on CAT correlated higher than .90 with true values simulated. For all 1PL fitting item banks most simulees used more than 20 items but less than 30 items to reach the pre-set level of measurement error. However, testing based on item banks that complied to the 2PL revealed that, on average, only 10 items were sufficient to end testing at the same measurement error level. Both clearly demonstrate the precision and economy of computerized adaptive testing. Empirical evaluations from everyday uses will show whether these trends will hold up in practice. If so, CAT will become possible and reasonable with some 150 well-calibrated 2PL items.


Methodology ◽  
2005 ◽  
Vol 1 (2) ◽  
pp. 81-85 ◽  
Author(s):  
Stefan C. Schmukle ◽  
Jochen Hardt

Abstract. Incremental fit indices (IFIs) are regularly used when assessing the fit of structural equation models. IFIs are based on the comparison of the fit of a target model with that of a null model. For maximum-likelihood estimation, IFIs are usually computed by using the χ2 statistics of the maximum-likelihood fitting function (ML-χ2). However, LISREL recently changed the computation of IFIs. Since version 8.52, IFIs reported by LISREL are based on the χ2 statistics of the reweighted least squares fitting function (RLS-χ2). Although both functions lead to the same maximum-likelihood parameter estimates, the two χ2 statistics reach different values. Because these differences are especially large for null models, IFIs are affected in particular. Consequently, RLS-χ2 based IFIs in combination with conventional cut-off values explored for ML-χ2 based IFIs may lead to a wrong acceptance of models. We demonstrate this point by a confirmatory factor analysis in a sample of 2449 subjects.


Methodology ◽  
2015 ◽  
Vol 11 (3) ◽  
pp. 89-99 ◽  
Author(s):  
Leslie Rutkowski ◽  
Yan Zhou

Abstract. Given a consistent interest in comparing achievement across sub-populations in international assessments such as TIMSS, PIRLS, and PISA, it is critical that sub-population achievement is estimated reliably and with sufficient precision. As such, we systematically examine the limitations to current estimation methods used by these programs. Using a simulation study along with empirical results from the 2007 cycle of TIMSS, we show that a combination of missing and misclassified data in the conditioning model induces biases in sub-population achievement estimates, the magnitude and degree to which can be readily explained by data quality. Importantly, estimated biases in sub-population achievement are limited to the conditioning variable with poor-quality data while other sub-population achievement estimates are unaffected. Findings are generally in line with theory on missing and error-prone covariates. The current research adds to a small body of literature that has noted some of the limitations to sub-population estimation.


Marketing ZFP ◽  
2019 ◽  
Vol 41 (4) ◽  
pp. 21-32
Author(s):  
Dirk Temme ◽  
Sarah Jensen

Missing values are ubiquitous in empirical marketing research. If missing data are not dealt with properly, this can lead to a loss of statistical power and distorted parameter estimates. While traditional approaches for handling missing data (e.g., listwise deletion) are still widely used, researchers can nowadays choose among various advanced techniques such as multiple imputation analysis or full-information maximum likelihood estimation. Due to the available software, using these modern missing data methods does not pose a major obstacle. Still, their application requires a sound understanding of the prerequisites and limitations of these methods as well as a deeper understanding of the processes that have led to missing values in an empirical study. This article is Part 1 and first introduces Rubin’s classical definition of missing data mechanisms and an alternative, variable-based taxonomy, which provides a graphical representation. Secondly, a selection of visualization tools available in different R packages for the description and exploration of missing data structures is presented.


Sign in / Sign up

Export Citation Format

Share Document