scholarly journals Analysis of high pressure tests on wet gas flow metering with a Venturi meter

2015 ◽  
Vol 44 ◽  
pp. 126-131 ◽  
Author(s):  
P. Gajan ◽  
Q. Decaudin ◽  
J.P. Couput
2011 ◽  
Vol 383-390 ◽  
pp. 4922-4927
Author(s):  
Peng Xia Xu ◽  
Yan Feng Geng

Wet gas flow is a typical two-phase flow with low liquid fractions. As differential pressure signal contains rich information of flow parameters in two-phase flow metering, a new method is proposed for wet gas flow metering based on differential pressure (DP) and blind source separation (BSS) techniques. DP signals are from a couple of slotted orifices and the BSS method is based on time-frequency analysis. A good relationship between the liquid flow rate and the characteristic quantity of the separated signal is established, and a differential pressure correlation for slotted orifice is applied to calculate the gas flow rate. The calculation results are good with 90% relative errors less than ±10%. The results also show that BSS is an effective method to extract liquid flow rate from DP signals of wet gas flow, and to analysis different interactions among the total DP readings.


2008 ◽  
Vol 2008 ◽  
pp. 1-25 ◽  
Author(s):  
Fang Lide ◽  
Zhang Tao ◽  
Xu Ying

When Venturi meters are used in wet gas, the measured differential pressure is higher than it would be in gas phases flowing alone. This phenomenon is called over-reading. Eight famous over-reading correlations have been studied by many researchers under low- and high-pressure conditions, the conclusion is separated flow model and homogeneous flow model performing well both under high and low pressures. In this study, a new metering method is presented based on homogeneous and separated flow theory; the acceleration pressure drop and the friction pressure drop of Venturi under two-phase flow conditions are considered in new correlation, and its validity is verified through experiment. For low pressure, a new test program has been implemented in Tianjin University’s low-pressure wet gas loop. For high pressure, the National Engineering Laboratory offered their reports on the web, so the coefficients of the new proposed correlation are fitted with all independent data both under high and low pressures. Finally, the applicability and errors of new correlation are analyzed.


2018 ◽  
Vol 96 ◽  
pp. 311-320 ◽  
Author(s):  
Yanzhi Pan ◽  
Yugao Ma ◽  
Shanfang Huang ◽  
Pengman Niu ◽  
Dong Wang ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2291
Author(s):  
Barbara Tomaszewska-Wach ◽  
Mariusz Rzasa

Flow measurements that utilize differential pressure meters are commonly applied in industry. In such conditions, gas flow is often accompanied by liquid condensation. For this reason, errors occur in the metering process that can be attributed to the fluctuations in continuous phase parameters in the flow. Furthermore, the occurrence of a dispersed phase results in flow disturbance and dynamic pressure pulsations. For the above reasons, new methods and tools are sought with the purpose of performing measurements of gas-liquid flows providing measurement results that can be considered as fairly accurate in the cases when flow involves a liquid phase form. The paper reports the results of a study involving measurement of wet gas flow using differential pressure flowmeters. The experiments were conducted for three constant mass air flow rates equal to 0.06, 0.078 and 0.086 kg/s. After stabilization of the air flow rates, water was fed into the pipe with flow rates in the range from 0.01 to 0.16 kg/s. The research involved a standard orifice and three types of slotted orifices with various slot arrangements and geometries. The analysis focused on the effect of orifice geometry on the flow metering results. On the basis of the results, it was found that the slotted orifice generates smaller differential pressure values compared to the standard orifice. The water mass fraction in the gas leads to overestimated results of measurements across the flowmeter. Regardless of the type of the orifice, is necessary to undertake a correction of the results. The paper proposes a method of gas mass flow correction. The results were compared with the common over-reading correction models available in the literature.


Sign in / Sign up

Export Citation Format

Share Document