A new model for volume fraction measurements of horizontal high-pressure wet gas flow using gamma-based techniques

2018 ◽  
Vol 96 ◽  
pp. 311-320 ◽  
Author(s):  
Yanzhi Pan ◽  
Yugao Ma ◽  
Shanfang Huang ◽  
Pengman Niu ◽  
Dong Wang ◽  
...  
SPE Journal ◽  
2006 ◽  
Vol 11 (02) ◽  
pp. 199-205 ◽  
Author(s):  
David I. Atkinson ◽  
Oyvind Reksten ◽  
Gerald Smith ◽  
Helge Moe

Summary Dedicated wet-gas flowmeters are now commercially available for the measurement of gas and liquid flow rates and offer a more compact measurement solution than does the traditional separator approach. The interpretation models of traditional multiphase flowmeters emphasize the liquid rate measurements and have been used to well test and meter mostly liquid-rich flow streams. These models were not developed for the measurement of gas flow rates, particularly those of wet gas. A new interpretation is described that allows a traditional multiphase flowmeter to operate in a dual mode either as a multiphase meter or as a wet-gas meter in 90 to 100% gas. The new interpretation model was developed for a commercially available multiphase flowmeter consisting of a venturi and a dual-energy composition meter. This combination results in excellent predictions of the gas flow rate; the liquid rate prediction is made with acceptable accuracy and no additional measurements. The wet gas and low-liquid-volume-fraction interpretation model is described together with the multiphase flowmeter. Examples of applying this model to data collected on flow loops are presented, with comparison to reference flow rates. The data from the Sintef and NEL flow loops show an error (including the reference meter error) in the gas flow rate, better than ± 2% reading (95% confidence interval), at line conditions; the absolute error (including the reference meter error) in the measured total liquid flow rate at line conditions was better than ± 2 m3/h (< ± 300 B/D: 95% confidence interval). This new interpretation model offers a significant advance in the metering of wet-gas multiphase flows and yields the possibility of high accuracies to meet the needs of gas-well testing and production allocation applications without the use of separators. Introduction There has been considerable focus in recent years on the development of new flow-measurement techniques for application to surface well testing and flow-measurement allocation in multiphase conditions without separating the phases. This has resulted in new technology from the industry for both gas and oil production. Today, there are wet-gas flowmeters, dedicated to the metering of wet-gas flows, and multiphase meters, for the metering of multiphase liquid flows. The common approach to wet-gas measurement relates gas and liquid flows to a "pseudo-gas flow rate" calculated from the standard single-phase equations. This addresses the need for gas measurement in the presence of liquids and can be applied to a limit of liquid flow [or gas volume fraction, (GVF)], though the accuracy of this approach decreases with decreasing GVF. The accurate determination of liquid rates by wet-gas meters is restricted in range. The application and performance of multiphase meters has been well documented through technical papers and industry forums, and after several years of development is maturing (Scheers 2004). Some multiphase measurement techniques can perform better, and the meters provide a more compact solution, than the traditional separation approach. It is not surprising that the use of multiphase flowmeters has grown significantly, the worldwide number doubling in little over a 2-year period (Mehdizadeh et al. 2002). Multiphase-flowmeter interpretation emphasizes the liquid rate measurement, and the application of multiphase flowmeters has been predominantly for liquid-rich flow stream allocation and well testing.


2008 ◽  
Vol 2008 ◽  
pp. 1-25 ◽  
Author(s):  
Fang Lide ◽  
Zhang Tao ◽  
Xu Ying

When Venturi meters are used in wet gas, the measured differential pressure is higher than it would be in gas phases flowing alone. This phenomenon is called over-reading. Eight famous over-reading correlations have been studied by many researchers under low- and high-pressure conditions, the conclusion is separated flow model and homogeneous flow model performing well both under high and low pressures. In this study, a new metering method is presented based on homogeneous and separated flow theory; the acceleration pressure drop and the friction pressure drop of Venturi under two-phase flow conditions are considered in new correlation, and its validity is verified through experiment. For low pressure, a new test program has been implemented in Tianjin University’s low-pressure wet gas loop. For high pressure, the National Engineering Laboratory offered their reports on the web, so the coefficients of the new proposed correlation are fitted with all independent data both under high and low pressures. Finally, the applicability and errors of new correlation are analyzed.


Author(s):  
Olav Mehlum ◽  
Øyvind Hundseid ◽  
Lars E. Bakken

Abstract Subsea wet gas compressors have been successfully in operation for approximately 5 years. Their use has proven to increase the recovery by approximately 10% and achieve a reliability up to 98%. Further developed and operation of subsea wet gas compression require detailed knowledge of compressor operability and how shift in operational conditions affect the compressor system. The compressors ability to handle wet gas is documented in detail for a gas volume fraction limited down to 0.90. The 4–5 last year of operation proves the wet gas concepts capability. As years pass by, well pressure and production rate declines which causes the compressor operation point to shift towards the high head and low flow (surge) area of the characteristics. In addition, compressor inlet transients increase due to pipe surge (slugs), requiring a robust control system to prevent instabilities, e.g. compressor surge. It is therefore vital to understand how the compressor inlet flow device behaves at different wet operation conditions. The article documents how a standard dry gas venturi tube behave at different wet gas operation conditions. The venturi is designed according to ISO5167-4 for dry gas conditions and is tested at the low-pressure air water compressor test rig at NTNU. The primary objective of the work has been to visualize the wet flow regime through the transparent venturi tube and to document the wet gas flow rate measurements by means of single-phase meters. The venturi tube is tested in a GMF range from 1 to 0.83 at an air volume flow rate of 1.3m3/s.


2004 ◽  
Vol 126 (3) ◽  
pp. 656-664 ◽  
Author(s):  
Gi-Heon Kim ◽  
Allan Kirkpatrick ◽  
Charles Mitchell

The topic of this paper is the computational modeling of gas injection through various poppet valve geometries in a large bore engine. The objective of the paper is to contribute to a better understanding of the significance of the poppet valve and the piston top in controlling the mixing of the injected fuel with the air in the cylinder. In this paper, the flow past the poppet valve into the engine cylinder is computed for both a low (4 bar) and a high pressure (35 bar) injection process using unshrouded and shrouded valves. Experiments using PLIF (planar laser induced fluorescence) are used to visualize the actual fluid flow for the valve geometries considered. The results indicate that for low injection pressures the gas flow around a typical poppet valve collapses to the axis of symmetry of the valve downstream of the poppet. At high pressure, the gas flow from this simple poppet valve does not collapse, but rather expands outward and flows along the cylinder wall. At high pressures, addition of a shroud around the poppet valve was effective in directing the supersonic flow toward the center of the cylinder. Additional computations with a moving piston show that at top dead center, the flammable volume fraction and turbulence intensity with high pressure shrouded injection are larger than for low pressure injection.


Sign in / Sign up

Export Citation Format

Share Document