Salmonella survival after exposure to heat in a model meat juice system

2021 ◽  
Vol 94 ◽  
pp. 103628
Author(s):  
Amreeta Sarjit ◽  
Joshua T. Ravensdale ◽  
Ranil Coorey ◽  
Narelle Fegan ◽  
Gary A. Dykes
Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 123
Author(s):  
María Bernad-Roche ◽  
Alejandro Casanova-Higes ◽  
Clara M. Marín-Alcalá ◽  
Alberto Cebollada-Solanas ◽  
Raúl C. Mainar-Jaime

Few studies have focused on assessing Salmonella infection in the nursery and its role in further pig production periods. Mesenteric lymph nodes, intestinal content, and meat juice from 389 6-week-old male piglets intended for human consumption from five breeding farms and 191 pooled floor fecal samples from gilt development units (GDU) from the same farms were analyzed to estimate and characterize (by pulsed-field gel electrophoresis and antimicrobial resistance analyses) Salmonella infection. The prevalence of infection and shedding among piglets was 36.5% and 37.3%, respectively, shedding being significantly associated with infection (Odds Ratio = 12.7; CI 7.3–22.0). Salmonella Rissen; S. 4,[5],12:i:-; and S. Derby were the most common serotypes. A low level of Salmonella-specific maternal antibodies at the beginning of the nursery period suggested it was a period of high risk of infection. Resistance to 3rd- and 4th-generation cephalosporins was detected in piglet isolates although the piglets never received antibiotics, indicating they could be vectors of antimicrobial resistance. The same Salmonella clones were detected in piglet and GDU isolates, suggesting that infected piglets play a significant role in the infection of gilts and consequently of finishing pigs in the case of production farms. The control of Salmonella infection in nursery piglets may decrease the risk of abattoir and carcass contamination.


1994 ◽  
Vol 179 (2) ◽  
pp. 601-608 ◽  
Author(s):  
C M Alpuche-Aranda ◽  
E L Racoosin ◽  
J A Swanson ◽  
S I Miller

Light microscopic studies of phagocytosis showed that Salmonella typhimurium entered mouse macrophages enclosed in spacious phagosomes (SP). Viewed by time-lapse video microscopy, bone marrow-derived macrophages exposed to S. typhimurium displayed generalized plasma membrane ruffling and macropinocytosis. Phagosomes containing Salmonella were morphologically indistinguishable from macropinosomes. SP formation was observed after several methods of bacterial opsonization, although bacteria opsonized with specific IgG appeared initially in small phagosomes that later enlarged. In contrast to macropinosomes induced by growth factors, which shrink completely within 15 min, SP persisted in the cytoplasm, enlarging often by fusion with macropinosomes or other SP. A Salmonella strain containing a constitutive mutation in the phoP virulence regulatory locus (PhoPc) induced significantly fewer SP. Similar to Yersinia enterocolitica, PhoPc bacteria entered macrophages in close-fitting phagosomes, consistent with that expected for conventional receptor-mediated phagocytosis. These results suggest that formation of SP contributes to Salmonella survival and virulence.


2018 ◽  
Vol 217 (12) ◽  
pp. 4199-4214 ◽  
Author(s):  
Pawan Kishor Singh ◽  
Anjali Kapoor ◽  
Richa Madan Lomash ◽  
Kamal Kumar ◽  
Sukrut C. Kamerkar ◽  
...  

SipA is a major effector of Salmonella, which causes gastroenteritis and enteric fever. Caspase-3 cleaves SipA into two domains: the C-terminal domain regulates actin polymerization, whereas the function of the N terminus is unknown. We show that the cleaved SipA N terminus binds and recruits host Syntaxin8 (Syn8) to Salmonella-containing vacuoles (SCVs). The SipA N terminus contains a SNARE motif with a conserved arginine residue like mammalian R-SNAREs. SipAR204Q and SipA1–435R204Q do not bind Syn8, demonstrating that SipA mimics a cognate R-SNARE for Syn8. Consequently, Salmonella lacking SipA or that express the SipA1–435R204Q SNARE mutant are unable to recruit Syn8 to SCVs. Finally, we show that SipA mimicking an R-SNARE recruits Syn8, Syn13, and Syn7 to the SCV and promotes its fusion with early endosomes to potentially arrest its maturation. Our results reveal that SipA functionally substitutes endogenous SNAREs in order to hijack the host trafficking pathway and promote Salmonella survival.


Meat Science ◽  
1997 ◽  
Vol 45 (1) ◽  
pp. 127-131 ◽  
Author(s):  
Kerstin Lundström ◽  
Ann-Charlotte Enfält
Keyword(s):  

2001 ◽  
Vol 32 (5) ◽  
pp. 441-453 ◽  
Author(s):  
Sten Mortensen ◽  
Bertel Strandbygaard ◽  
Anette B�tner ◽  
Niels Feld ◽  
Preben Willeberg

Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 424
Author(s):  
Sean Yeo ◽  
Ming Yang ◽  
Martin Nyachoti ◽  
Rolf Rauh ◽  
Johnny D. Callahan ◽  
...  

Foot-and-mouth disease virus (FMDV) is a highly contagious agent that impacts livestock industries worldwide, leading to significant financial loss. Its impact can be avoided or minimized if the virus is detected early. FMDV detection relies on vesicular fluid, epithelial tags, swabs, serum, and other sample types from live animals. These samples might not always be available, necessitating the use of alternative sample types. Meat juice (MJ), collected after freeze-thaw cycles of skeletal muscle, is a potential sample type for FMDV detection, especially when meat is illegally imported. We have performed experiments to evaluate the suitability of MJ for FMDV detection. MJ was collected from pigs that were experimentally infected with FMDV. Ribonucleic acid (RNA) was extracted from MJ, sera, oral swabs, and lymph nodes from the same animals and tested for FMDV by real-time reverse transcription polymerase chain reaction (rRT-PCR). MJ was also tested for FMDV antigen by Lateral Flow Immunoassay (LFI). FMDV RNA was detected in MJ by rRT-PCR starting at one day post infection (DPI) and as late as 21 DPI. In contrast, FMDV RNA was detected in sera at 1–7 DPI. Antigen was also detected in MJ at 1–9 DPI by LFI. Live virus was not isolated directly from MJ, but was recovered from the viral genome by transfection into susceptible cells. The data show that MJ is a good sample type for FMDV detection.


Sign in / Sign up

Export Citation Format

Share Document