Combinatorial analysis of population dynamics, metabolite levels and malolactic fermentation in Saccharomyces cerevisiae/ Lachancea thermotolerans mixed fermentations

2021 ◽  
Vol 96 ◽  
pp. 103712
Author(s):  
S. Fairbairn ◽  
L. Engelbrecht ◽  
M.E. Setati ◽  
M. du Toit ◽  
F.F. Bauer ◽  
...  
Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 658 ◽  
Author(s):  
Alice Agarbati ◽  
Laura Canonico ◽  
Francesca Comitini ◽  
Maurizio Ciani

Sulfites and sulfides are produced by yeasts in different amounts depending on different factors, including growth medium and specific strain variability. In natural must, some strains can produce an excess of sulfur compounds that confer unpleasant smells, inhibit malolactic fermentation and lead to health concerns for consumers. In organic wines and in sulfite-free wines the necessity to limit or avoid the presence of sulfide and sulfite requires the use of selected yeast strains that are low producers of sulfur compounds, with good fermentative and aromatic aptitudes. In the present study, exploiting the sexual mass-mating spores’ recombination of a native Saccharomyces cerevisiae strain previously isolated from grape, three new S. cerevisiae strains were selected. They were characterized by low sulfide and sulfite production and favorable aromatic imprinting. This approach, that occurs spontaneously also in nature, allowed us to obtain new native S. cerevisiae strains with desired characteristics that could be proposed as new starters for organic and sulfite-free wine production, able to control sulfur compound production and to valorize specific wine types.


2020 ◽  
Vol 8 (5) ◽  
pp. 655 ◽  
Author(s):  
Santiago Benito

The combined use of Lachancea thermotolerans and Schizosaccharomyces pombe is a new winemaking biotechnology that aims to solve some modern industrial oenology problems related to warm viticulture regions. These areas are characterized for producing musts with high levels of sugar that can potentially be converted into wines with elevated ethanol contents, which are usually associated with high pH levels. This biotechnology was reported for the first time in 2015, and since then, several scientific articles have been published regarding this topic. These reported scientific studies follow an evolution similar to that performed in the past for Saccharomyces cerevisiae and Oenococcus oeni; they start by reporting results for basic winemaking parameters at the beginning, later continuing with more advanced parameters. This review compares the results of different researchers that have applied this new biotechnology and have studied wine quality parameters such as ethanol, glycerol, malic acid, lactic acid, amino acids, aroma compounds, or anthocyanins. It is shown that the new biotechnology is repeatedly reported to solve specific winemaking problems such as the lack of acidity, biogenic amines, ethyl carbamate, or undesirable color losses. Such results highlight this biotechnology as a promising option for warm viticulture areas.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Maren Wehrs ◽  
Mitchell G. Thompson ◽  
Deepanwita Banerjee ◽  
Jan-Philip Prahl ◽  
Norma M. Morella ◽  
...  

2017 ◽  
Vol 68 (2) ◽  
pp. 93-102 ◽  
Author(s):  
Kirti Shekhawat ◽  
Tristan Jade Porter ◽  
Florian F. Bauer ◽  
Mathabatha E. Setati

2021 ◽  
Author(s):  
Chrats Melkonian ◽  
Auke Haver ◽  
Marijke Wagner ◽  
Zakaria Kalmoua ◽  
Anna-Sophia Hellmuth ◽  
...  

AbstractThe yeast Lachancea thermotolerans converts consumed sugar partly to lactic acid instead of ethanol and is therefore used together with Saccharomyces cerevisiae to produce wines with a lower alcohol content. Being able to distinguish these yeasts is important for quality control and quantitative assessment of the contributions of both yeasts to wine fermentations. Commonly used methods to routinely distinguish these organisms are indirect or rely on commercial products of undisclosed composition. Here we describe that adding bromocresol purple to agar media induces Lachancea colonies to develop a brown color, whereas Saccharomyces colonies remain white.


Sign in / Sign up

Export Citation Format

Share Document