scholarly journals Reduction of Sulfur Compounds through Genetic Improvement of Native Saccharomyces cerevisiae Useful for Organic and Sulfite-Free Wine

Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 658 ◽  
Author(s):  
Alice Agarbati ◽  
Laura Canonico ◽  
Francesca Comitini ◽  
Maurizio Ciani

Sulfites and sulfides are produced by yeasts in different amounts depending on different factors, including growth medium and specific strain variability. In natural must, some strains can produce an excess of sulfur compounds that confer unpleasant smells, inhibit malolactic fermentation and lead to health concerns for consumers. In organic wines and in sulfite-free wines the necessity to limit or avoid the presence of sulfide and sulfite requires the use of selected yeast strains that are low producers of sulfur compounds, with good fermentative and aromatic aptitudes. In the present study, exploiting the sexual mass-mating spores’ recombination of a native Saccharomyces cerevisiae strain previously isolated from grape, three new S. cerevisiae strains were selected. They were characterized by low sulfide and sulfite production and favorable aromatic imprinting. This approach, that occurs spontaneously also in nature, allowed us to obtain new native S. cerevisiae strains with desired characteristics that could be proposed as new starters for organic and sulfite-free wine production, able to control sulfur compound production and to valorize specific wine types.

Fermentation ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 64 ◽  
Author(s):  
Heinrich Du Plessis ◽  
Maret Du Toit ◽  
Hélène Nieuwoudt ◽  
Marieta Van der Rijst ◽  
Justin Hoff ◽  
...  

Hanseniaspora uvarum is one of the predominant non-Saccharomyces yeast species found on grapes and in juice, but its effect on lactic acid bacteria (LAB) growth and wine flavor has not been extensively studied. Therefore, the interaction between H. uvarum, two Saccharomyces cerevisiae yeast strains, two LAB species (Lactobacillus plantarum and Oenococcus oeni) in combination with two malolactic fermentation (MLF) strategies was investigated in Shiraz wine production trials. The evolution of the different microorganisms was monitored, non-volatile and volatile compounds were measured, and the wines were subjected to sensory evaluation. Wines produced with H. uvarum in combination with S. cerevisiae completed MLF in a shorter period than wines produced with only S. cerevisiae. Sequential MLF wines scored higher for fresh vegetative and spicy aroma than wines where MLF was induced as a simultaneous inoculation. Wines produced with H. uvarum had more body than wines produced with only S. cerevisiae. The induction of MLF using L. plantarum also resulted in wines with higher scores for body. H. uvarum can be used to reduce the duration of MLF, enhance fresh vegetative aroma and improve the body of a wine.


2008 ◽  
Vol 26 (No. 5) ◽  
pp. 376-382 ◽  
Author(s):  
V. Petravić Tominac ◽  
K. Kovačević Ganić ◽  
D. Komes ◽  
L. Gracin ◽  
M. Banović ◽  
...  

Volatile aroma compounds production by two autochthonous <I>Saccharomyces cerevisiae</I> strains, isolated from Istria region, and three other yeast strains (<I>Saccharomyces bayanus</I> and two commercial <I>Saccharomyces cerevisiae</I> wine yeasts) was investigated on a small scale using synthetic VP4 medium and Graševina must at 12 and 20°C. The results obtained by gas chromatography analyses were compared with the aroma production properties of the native microflora, remaining after Graševina must sulphiting. In both media and at both temperatures, the wine yeasts investigated showed different metabolic profiles regarding the tested volatile aroma compounds, which should be taken in consideration for autochthonous wine production. Although the synthetic medium proved to be appropriate for the investigation of the fermentative properties, the determination of secondary aroma production by wine yeasts has to be conducted by must fermentation or possibly by fermentation of another synthetic medium whose composition would be more similar to must.


2020 ◽  
Vol 8 (3) ◽  
pp. 403 ◽  
Author(s):  
Maria del Carmen González-Jiménez ◽  
Jaime Moreno-García ◽  
Teresa García-Martínez ◽  
Juan José Moreno ◽  
Anna Puig-Pujol ◽  
...  

The aromatic metabolites derived from yeast metabolism determine the characteristics of aroma and taste in wines, so they are considered of great industrial interest. Volatile esters represent the most important group and therefore, their presence is extremely important for the flavor profile of the wine. In this work, we use and compare two Saccharomyces cerevisiae yeast strains: P29, typical of sparkling wines resulting of second fermentation in a closed bottle; G1, a flor yeast responsible for the biological aging of Sherry wines. We aimed to analyze and compare the effect of endogenous CO2 overpressure on esters metabolism with the proteins related in these yeast strains, to understand the yeast fermentation process in sparkling wines. For this purpose, protein identification was carried out using the OFFGEL fractionator and the LTQ Orbitrap, following the detection and quantification of esters with gas chromatograph coupled to flame ionization detector (GC-FID) and stir-bar sorptive extraction, followed by thermal desorption and gas chromatography-mass spectrometry (SBSE-TD-GC-MS). Six acetate esters, fourteen ethyl esters, and five proteins involved in esters metabolism were identified. Moreover, significant correlations were established between esters and proteins. Both strains showed similar behavior. According to these results, the use of this flor yeast may be proposed for the sparkling wine production and enhance the diversity and the typicity of sparkling wine yeasts.


2022 ◽  
Vol 1048 ◽  
pp. 476-484
Author(s):  
Vo Ngoc An ◽  
Van Thinh Pham ◽  
Vinh Long Do ◽  
Nguyen Quoc Duy ◽  
Thu Thuy Dang ◽  
...  

The large amount of jackfruit (Artocarpus heterophyllus Lam) harvested and their short use time caused many difficulties for the farmers. Fortunately, the high sugar content in jackfruit meat is a hopeful substance for wine production. This study aimed to consider the effect of yeast strains and their concentration on fermented jackfruit solution. Jackfruit juice with 14 °Brix is ​​fermented using 0.005 to 0.015% (w/v) Saccharomyces cerevisiae RV002, Mauri Instant Dry Yeast yeast under anaerobic conditions for 1 to 4 days at 30 °C. Survey samples were checked once a day to analyze the indicators. The functional report of the sugar in the fermentation time, shows that the higher incidence of yeast cultures and the initial sugar concentration inhibited yeast growth. The results showed that fermentation from jackfruit meat with 25 °Brix using Saccharomyces cerevisiae RV002 yeast with concentration of 0.01% for 3 days is the best to create a good quality with ethanol content 4,9% and characteristic aroma of jackfruit.


2001 ◽  
Vol 67 (9) ◽  
pp. 4346-4348 ◽  
Author(s):  
Vincent J. Higgins ◽  
Philip J. L. Bell ◽  
Ian W. Dawes ◽  
Paul V. Attfield

ABSTRACT A yeast strain capable of leavening both unsugared and sweet bread dough efficiently would reduce the necessity of carrying out the expensive procedure of producing multiple baker's yeast strains. But issues involving the use of genetically modified foods have rendered the use of recombinant techniques for developing yeast strains controversial. Therefore, we used strong selection and screening systems in conjunction with traditional mass mating techniques to develop a strain of Saccharomyces cerevisiaethat efficiently leavens both types of dough.


2010 ◽  
Vol 31 (2) ◽  
pp. 86
Author(s):  
Jennifer Bellon

When we think of Saccharomyces cerevisiae, fermentation immediately comes to mind, but this is not the only trait that makes this yeast the organism of choice for bread, beer and wine production. The winemaking industry, for example, requires robust strains, capable of converting sugar to ethanol in challenging conditions; high osmotic stress and low pH in the initial grape must, followed by high ethanol concentration at the later stages of fermentation. Winemakers also look for ways of using fermentation to introduce aroma and flavour diversity to their wines as a means of improving style and for product differentiation. Choice of wine yeast from the plethora of strains available to winemakers is one way of achieving this, particularly with the new breed of interspecific hybrid yeast strains currently being generated.


2018 ◽  
Vol 39 (4) ◽  
pp. 474-482
Author(s):  
Hoang Thi Le Thuong ◽  
Nguyen Quang Hao ◽  
Tran Thi Thuy

Eight yeast strains (denoted as D1 to D8) were isolated from samples of natural fermented pineapple. Strain D8 showed highest alcoholic production at low pH and special aroma of pineapple has been chosen for further study. Taxonomic characterization of strain D8 using morphological, biochemical and molecular biological studies confirmed that strain D8  belong to Saccharomycetaceae family, Saccharomycetales order and Saccharomyces cerevisiae species. Therefore, we named this strain as Saccharomyces cerevisiae D8 for further study on Brandy production from pineapple. Citation: Hoang Thi Le Thuong, Nguyen Quang Hao, Tran Thi Thuy, 2017. Taxonomic characterization and identification of Saccharomyces cerevisiae D8 for brandy production from pineapple. Tap chi Sinh hoc, 39(4): 474- 482. DOI: 10.15625/0866-7160/v39n4.10864.*Corresponding author: [email protected] Received 5 December 2016, accepted 12 August 2017


Beverages ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 27
Author(s):  
Dimitrios Kontogiannatos ◽  
Vicky Troianou ◽  
Maria Dimopoulou ◽  
Polydefkis Hatzopoulos ◽  
Yorgos Kotseridis

Nemea and Mantinia are famous wine regions in Greece known for two indigenous grape varieties, Agiorgitiko and Moschofilero, which produce high quality PDO wines. In the present study, indigenous Saccharomyces cerevisiae yeast strains were isolated and identified from spontaneous alcoholic fermentation of Agiorgitiko and Moschofilero musts in order to evaluate their oenological potential. Random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) recovered the presence of five distinct profiles from a total of 430 yeast isolates. The five obtained strains were evaluated at microvinifications trials and tested for basic oenological and biochemical parameters including sulphur dioxide and ethanol tolerance as well as H2S production in sterile grape must. The selected autochthonous yeast strains named, Soi2 (Agiorgitiko wine) and L2M (Moschofilero wine), were evaluated also in industrial (4000L) fermentations to assess their sensorial and oenological characteristics. The volatile compounds of the produced wines were determined by GC-FID. Our results demonstrated the feasibility of using Soi2 and L2M strains in industrial fermentations for Agiorgitiko and Moschofilero grape musts, respectively.


Sign in / Sign up

Export Citation Format

Share Document