Effect of insoluble dietary fibre addition on technological, sensory, and structural properties of durum wheat spaghetti

2012 ◽  
Vol 130 (2) ◽  
pp. 299-309 ◽  
Author(s):  
Nisha Aravind ◽  
Mike Sissons ◽  
Narelle Egan ◽  
Christopher Fellows
2012 ◽  
Vol 132 (2) ◽  
pp. 993-1002 ◽  
Author(s):  
Nisha Aravind ◽  
Mike J. Sissons ◽  
Christopher M. Fellows ◽  
Jarra Blazek ◽  
Elliot P. Gilbert

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1812
Author(s):  
Juncai Tu ◽  
Margaret Anne Brennan ◽  
Gang Wu ◽  
Weidong Bai ◽  
Ping Cheng ◽  
...  

Sorghum biscuits were enriched with mushroom powders (Lentinula edodes, Auricularia auricula and Tremella fuciformis) at 5%, 10% and 15% substitution levels. An in vitro gastrointestinal digestion was used to evaluate the effect of this enrichment on the phenolic content and soluble peptide content as well as antioxidant activities of the gastric or intestinal supernatants (bio-accessible fractions), and the remaining portions of phenolic compounds, antioxidants and β-glucan in the undigested residue (non-digestible fraction). The phenolic content of the gastric and intestinal supernatants obtained from digested mushroom-enriched biscuits was found to be higher than that of control biscuit, and the phenolic content was positively correlated to the antioxidant activities in each fraction (p < 0.001). L. edodes and T. fuciformis enrichment increased the soluble protein content (small peptide) of sorghum biscuits after in vitro digestion. All mushroom enrichment increased the total phenolic content and β-glucan content of the undigested residue and they were positively correlated (p < 0.001). The insoluble dietary fibre of biscuits was positively correlated with β-glucan content (p < 0.001) of undigested residue. These findings suggested that enriching food with mushroom derived dietary fibre increases the bioavailability of the non-digestible β-glucan and phenolic compounds.


2020 ◽  
Vol 21 (8) ◽  
pp. 2933 ◽  
Author(s):  
Ilaria Marcotuli ◽  
Pasqualina Colasuonno ◽  
Yves S. Y. Hsieh ◽  
Geoffrey B. Fincher ◽  
Agata Gadaleta

Durum wheat is one of most important cereal crops that serves as a staple dietary component for humans and domestic animals. It provides antioxidants, proteins, minerals and dietary fibre, which have beneficial properties for humans, especially as related to the health of gut microbiota. Dietary fibre is defined as carbohydrate polymers that are non-digestible in the small intestine. However, this dietary component can be digested by microorganisms in the large intestine and imparts physiological benefits at daily intake levels of 30–35 g. Dietary fibre in cereal grains largely comprises cell wall polymers and includes insoluble (cellulose, part of the hemicellulose component and lignin) and soluble (arabinoxylans and (1,3;1,4)-β-glucans) fibre. More specifically, certain components provide immunomodulatory and cholesterol lowering activity, faecal bulking effects, enhanced absorption of certain minerals, prebiotic effects and, through these effects, reduce the risk of type II diabetes, cardiovascular disease and colorectal cancer. Thus, dietary fibre is attracting increasing interest from cereal processors, producers and consumers. Compared with other components of the durum wheat grain, fibre components have not been studied extensively. Here, we have summarised the current status of knowledge on the genetic control of arabinoxylan and (1,3;1,4)-β-glucan synthesis and accumulation in durum wheat grain. Indeed, the recent results obtained in durum wheat open the way for the improvement of these important cereal quality parameters.


2016 ◽  
Vol 33 (No. 5) ◽  
pp. 449-457 ◽  
Author(s):  
H.J. Im ◽  
K.Y. Yoon

We examined the potential use of buckwheat hulls as a raw material for producing soluble dietary fibre. The insoluble fibre fraction obtained from buckwheat hulls was hydrolysed by two commercial enzymes (Celluclast 1.5L for the cellulose fraction and Viscozyme L for the hemicellulose fraction) to obtain soluble fibre hydrolysates. Alcohol-insoluble dietary fibre (AIF) was separated from the freeze-dried soluble hydrolysate by treatment with 85% ethanol. The water-holding, oil-binding, and swelling capacities of AIF were increased by enzymatic hydrolysis. AIF had significantly (P&nbsp;&lt; 0.05) higher functional properties than the control. AIF from the hemicellulose fraction effectively hindered the diffusion of glucose and bile acid from dialysis membranes, and had a significantly (P &lt; 0.05) greater bile acid inhibitory effect than carboxymethylcellulose or pectin. It can be concluded that AIF from buckwheat hulls by enzymatic hydrolysis can used as dietary supplement and additive in the food industry.


LWT ◽  
2020 ◽  
Vol 134 ◽  
pp. 110252
Author(s):  
Xiujuan Wang ◽  
Yuanyuan Zhang ◽  
Yunbo Li ◽  
Hansong Yu ◽  
Yuhua Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document