scholarly journals Interactions of β-carotene with WPI/Tween 80 mixture and oil phase: Effect on the behavior of O/W emulsions during in vitro digestion

2021 ◽  
Vol 341 ◽  
pp. 128155
Author(s):  
Andresa Gomes ◽  
Ana Letícia Rodrigues Costa ◽  
Dayane Dias Cardoso ◽  
Grazielle Náthia-Neves ◽  
M. Angela A. Meireles ◽  
...  
Author(s):  
Ling Chen ◽  
Wallace Yokoyama ◽  
Christina Tam ◽  
Yuqing Tan ◽  
Pricilla Alves ◽  
...  

2010 ◽  
Vol 43 (5) ◽  
pp. 1449-1454 ◽  
Author(s):  
S. Aisling Aherne ◽  
Trevor Daly ◽  
Marvin A. Jiwan ◽  
Laurie O’Sullivan ◽  
Nora M. O’Brien

Nutrients ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 76 ◽  
Author(s):  
Cristina Tudor ◽  
Torsten Bohn ◽  
Mohammed Iddir ◽  
Francisc Vasile Dulf ◽  
Monica Focşan ◽  
...  

Sea buckthorn oil, derived from the fruits of the shrub, also termed seaberry or sandthorn, is without doubt a strikingly rich source of carotenoids, in particular zeaxanthin and β-carotene. In the present study, sea buckthorn oil and an oil-in-water emulsion were subjected to a simulated gastro-intestinal in vitro digestion, with the main focus on xanthophyll bioaccessibility. Zeaxanthin mono- and di-esters were the predominant carotenoids in sea buckthorn oil, with zeaxanthin dipalmitate as the major compound (38.0%). A typical fatty acid profile was found, with palmitic (49.4%), palmitoleic (28.0%), and oleic (11.7%) acids as the dominant fatty acids. Taking into account the high amount of carotenoid esters present in sea buckthorn oil, the use of cholesterol esterase was included in the in vitro digestion protocol. Total carotenoid bioaccessibility was higher for the oil-in-water emulsion (22.5%) compared to sea buckthorn oil (18.0%) and even higher upon the addition of cholesterol esterase (28.0% and 21.2%, respectively). In the case of sea buckthorn oil, of all the free carotenoids, zeaxanthin had the highest bioaccessibility (61.5%), followed by lutein (48.9%), making sea buckthorn oil a potential attractive source of bioaccessible xanthophylls.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4497
Author(s):  
Beatriz S. Afonso ◽  
Ana G. Azevedo ◽  
Catarina Gonçalves ◽  
Isabel R. Amado ◽  
Eugénio C. Ferreira ◽  
...  

β-carotene loaded bio-based nanoparticles (NPs) were produced by the solvent-displacement method using two polymers: zein and ethylcellulose. The production of NPs was optimised through an experimental design and characterised in terms of average size and polydispersity index. The processing conditions that allowed to obtain NPs (<100 nm) were used for β-carotene encapsulation. Then β-carotene loaded NPs were characterised in terms of zeta potential and encapsulation efficiency. Transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction analysis were performed for further morphological and chemical characterisation. In the end, a static in vitro digestion following the INFOGEST protocol was performed and the bioaccessibility of β-carotene encapsulated in both NPs was determined. Results show that the best conditions for a size-controlled production with a narrow size distribution are lower polymer concentrations and higher antisolvent concentrations. The encapsulation of β-carotene in ethylcellulose NPs resulted in nanoparticles with a mean average size of 60 ± 9 nm and encapsulation efficiency of 74 ± 2%. β-carotene loaded zein-based NPs resulted in a mean size of 83 ± 8 nm and encapsulation efficiency of 93 ± 4%. Results obtained from the in vitro digestion showed that β-carotene bioaccessibility when encapsulated in zein NPs is 37 ± 1%, which is higher than the value of 8.3 ± 0.1% obtained for the ethylcellulose NPs.


2012 ◽  
Vol 26 (2) ◽  
pp. 427-433 ◽  
Author(s):  
Pan Wang ◽  
Hai-Jie Liu ◽  
Xue-Ying Mei ◽  
Mitsutoshi Nakajima ◽  
Li-Jun Yin

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2890
Author(s):  
Petunia Mashiane ◽  
Vimbainashe E. Manhivi ◽  
Tinotenda Shoko ◽  
Retha M. Slabbert ◽  
Yasmina Sultanbawa ◽  
...  

The leaves of African pumpkins (Momordica balsamina L.) are a commonly consumed traditional vegetable. They are a good source of polyphenolic antioxidants and carotenoids, which are, however, affected by cooking or digestion. We investigated the effect of household cooking methods (stir-frying or boiling) on the changes in bioactive metabolites, antioxidant capacity, release and accessibility of β-carotene and also inhibition of inhibitory activity against α-amylase and α-glucosidase enzymes during in vitro digestion of African pumpkin leaves compared to the raw leaves. Compared to boiled or raw leaves, stir-frying improved the availability of bioactive metabolites at the gastrointestinal phase. Quercetin 3-galactoside and rhamnetin 3-O-glucoside (marker compounds) discriminated the stir-fried leaves from raw leaves and boiled leaves after digestion. Stir-frying improved the release and accessibility of β-carotene and enhanced the antioxidant activities compared to boiling. Dialysable fractions of stir-fried leaves exhibited the greatest inhibitory activity against α-amylase and α-glucosidase enzymes compared to the raw and boiled leaves, as well as acarbose. Stir-frying, therefore, is recommended for use in household cooking to benefit consumers by increasing the intake of phenolics and β-carotene.


RSC Advances ◽  
2016 ◽  
Vol 6 (77) ◽  
pp. 73627-73635 ◽  
Author(s):  
Tao Wang ◽  
Ren Wang ◽  
Zhengxing Chen ◽  
Qixin Zhong

The release of encapsulated β-carotene is limited in simulated gastric digestion and is controllable in simulated intestinal digestion.


Sign in / Sign up

Export Citation Format

Share Document