scholarly journals Ecometabolic mixture design-fingerprints from exploratory multi-block data analysis in Coffea arabica beans from climate changes: elevated carbon dioxide and reduced soil water availability

2021 ◽  
pp. 129716
Author(s):  
Gustavo Galo Marcheafave ◽  
Cláudia Domiciano Tormena ◽  
Amelia Elena Terrile ◽  
Carlos Alberto Rossi Salamanca-Neto ◽  
Elen Romão Sartori ◽  
...  
2018 ◽  
Vol 69 (11) ◽  
pp. 1103 ◽  
Author(s):  
Audrey Delahunty ◽  
James Nuttall ◽  
Marc Nicolas ◽  
Jason Brand

Lentil (Lens culinaris Medik.) production in arable, Mediterranean-type climates is limited by heat waves and unreliable rainfall. Under climate change scenarios, increased atmospheric carbon dioxide (CO2) concentration will increase plant growth; however, the net effect of increasing occurrence and intensity of heat waves and drought is unclear. This study tested the response of combined acute high temperature (>32°C) at the early pod-filling stage and (i) crop-available soil water, and (ii) elevated CO2 on three lentil genotypes in two experiments. The three lentil genotypes selected were commercial cultivar PBA Bolt and two landraces sourced from the Australian Grains Genebank, AGG 71457 and AGG 73838. High soil-water availability (0.42 Mg m–3) throughout the growing season increased yield by 28% compared with low soil-water availability (0.35 Mg m–3). Across contrasting water treatments, there was no difference in patterns of crop response to high temperature during the early pod-filling phase (5 days at 42°C daytime, 25°C night), where yields were reduced by 45%. A significant interaction between high temperature response and genotype was observed, where reduction in grain number was higher for AGG 73838 (0.20% per degree-hour >32°C) than for AGG 71457 (0.07% per degree-hour >32°C) or PBA Bolt (0.10% per degree-hour >32°C). For heat and CO2 effects, there was no significant interaction between high temperature (3 days at 38°C daytime, ambient night temperature) and CO2 treatment on yield components. There was, however, an overall trend of increased biomass, grain number and yield due to elevated CO2. Although non-limiting soil water did not reduce the impact of high temperature in this study, the range in response across genotypes to high temperature supports opportunity for increased adaptation of lentil toward increasing yield stability under effects of climate change.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Yuan Gong ◽  
Christina L. Staudhammer ◽  
Susanne Wiesner ◽  
Gregory Starr ◽  
Yinlong Zhang

Understanding plant phenological change is of great concern in the context of global climate change. Phenological models can aid in understanding and predicting growing season changes and can be parameterized with gross primary production (GPP) estimated using the eddy covariance (EC) technique. This study used nine years of EC-derived GPP data from three mature subtropical longleaf pine forests in the southeastern United States with differing soil water holding capacity in combination with site-specific micrometeorological data to parameterize a photosynthesis-based phenological model. We evaluated how weather conditions and prescribed fire led to variation in the ecosystem phenological processes. The results suggest that soil water availability had an effect on phenology, and greater soil water availability was associated with a longer growing season (LOS). We also observed that prescribed fire, a common forest management activity in the region, had a limited impact on phenological processes. Dormant season fire had no significant effect on phenological processes by site, but we observed differences in the start of the growing season (SOS) between fire and non-fire years. Fire delayed SOS by 10 d ± 5 d (SE), and this effect was greater with higher soil water availability, extending SOS by 18 d on average. Fire was also associated with increased sensitivity of spring phenology to radiation and air temperature. We found that interannual climate change and periodic weather anomalies (flood, short-term drought, and long-term drought), controlled annual ecosystem phenological processes more than prescribed fire. When water availability increased following short-term summer drought, the growing season was extended. With future climate change, subtropical areas of the Southeastern US are expected to experience more frequent short-term droughts, which could shorten the region’s growing season and lead to a reduction in the longleaf pine ecosystem’s carbon sequestration capacity.


2021 ◽  
Vol 257 ◽  
pp. 107147
Author(s):  
Sai-Yong Zhu ◽  
Zheng-Guo Cheng ◽  
Tao Tian ◽  
Dong-Shan Gong ◽  
Guang-Chao Lv ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document