Innovative ratiometric optical strategy: Nonconjugated polymer dots based fluorescence-scattering dual signal output for sensing mercury ions

2022 ◽  
Vol 374 ◽  
pp. 131771
Author(s):  
Pei Jia ◽  
Jiayu Yang ◽  
Jinjie Hou ◽  
Kairong Yang ◽  
Taotao Zhe ◽  
...  
2003 ◽  
Vol 10 (2) ◽  
pp. 155-164 ◽  
Author(s):  
Clarissa Pires de Castro ◽  
Jurandir SouzaDe ◽  
Carlos Bloch Jr

2020 ◽  
Vol 16 ◽  
Author(s):  
Pan Zhang ◽  
Shun-Sheng Zhao ◽  
JiaJia Wang ◽  
Xiang Rong Liu

Background: In recent years, environmental pollution and heavy metal pollution caused by rapid urbanization and industrialization have become increasingly serious. Among them, mercury (II) ion (Hg2+) is one of the highly toxic heavy metal ions, and its pollution comes from various natural resources and human activities. Therefore, people attach great importance to the development of analytical methods for effective analysis and sensitive detection of Hg2+ . Objective: Using grape skin as a green and environmental friendly carbon source, to synthesize fluorescent carbon dots, and try to apply them to the detect the concentration of Hg2+ in water. Method: Using "Hutai No. 8" grape skin as carbon source, fluorescent carbon dots were synthesized by one-step hydrothermal method. Structure and fluorescent properties of the carbon dots were tested using TEM, XPS, XRD and other characterization instruments, and their utilization on detection of mercury ions in the actual water samples was explored. Results: The CDs had a particle size of about 4.8 nm and a spherical shape. There are N-H, C-N, C=O and other functional groups on the surface. It was found that Hg2+ has obvious fluorescence quenching effect on CDs, and thus CDs fluorescence quenching method to detect the concentration Hg2+ was established, and the detection limit is 3.7 μM, which could be applied to test the concentration of Hg2+ in water samples. Conclusion: Using grape skin as carbon source, fluorescent carbon dots were successfully synthesized by hydrothermal method. Carbon dots were used to detect mercury ions in water, and a method for detecting mercury ions in actual water samples was established.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Azam Marjani ◽  
Reza Khan Mohammadi

AbstractHg(II) has been identified to be one of the extremely toxic heavy metals because of its hazardous effects and this fact that it is even more hazardous to animals than other pollutants such as Ag, Au, Cd, Ni, Pb, Co, Cu, and Zn. Accordingly, for the first time, tetrasulfide-functionalized fibrous silica KCC-1 (TS-KCC-1) spheres were synthesized by a facile, conventional ultrasonic-assisted, sol–gel-hydrothermal preparation approach to adsorb Hg(II) from aqueous solution. Tetrasulfide groups (–S–S–S–S–) were chosen as binding sites due to the strong and effective interaction of mercury ions (Hg(II)) with sulfur atoms. Hg(II) uptake onto TS-KCC-1 in a batch system has been carried out. Isotherm and kinetic results showed a very agreed agreement with Langmuir and pseudo-first-order models, respectively, with a Langmuir maximum uptake capacity of 132.55 mg g–1 (volume of the solution = 20.0 mL; adsorbent dose = 5.0 mg; pH = 5.0; temperature: 198 K; contact time = 40 min; shaking speed = 180 rpm). TS-KCC-1was shown to be a promising functional nanoporous material for the uptake of Hg(II) cations from aqueous media. To the best of our knowledge, there has been no report on the uptake of toxic Hg(II) cations by tetrasulfide-functionalized KCC-1 prepared by a conventional ultrasonic-assisted sol–gel-hydrothermal synthesis method.


RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22691-22691
Author(s):  
Jinjin Yin ◽  
Jiuchao Wang ◽  
Xiyue Yang ◽  
Tao Wu ◽  
Huashan Wang ◽  
...  

Correction for ‘Poly(adenine)-mediated DNA-functionalized gold nanoparticles for sensitive detection of mercury ions in aqueous media’ by Jinjin Yin et al., RSC Adv., 2019, 9, 18728–18733, DOI: 10.1039/C9RA03041G.


2021 ◽  
Vol 330 ◽  
pp. 129304
Author(s):  
Kaikai Xiang ◽  
Gang Chen ◽  
AXiu Nie ◽  
Wenjing Wang ◽  
Heyou Han

2021 ◽  
Author(s):  
Qingli Chai ◽  
Yuqi Wan ◽  
Yanyun Zou ◽  
Ting Zhu ◽  
Ningxing Li ◽  
...  

In this work, an ultrasensitive and turn-on sensor for homogeneous Hg2+ detection has been constructed based on target-triggered isothermal cycling reaction and rapid label-free signal output with dsDNA-templated copper nanoparticles...


Sign in / Sign up

Export Citation Format

Share Document