Use of mathematic models to describe the microbial inactivation on baby carrots by gaseous chlorine dioxide

Food Control ◽  
2020 ◽  
pp. 107832
Author(s):  
Jiewen Guan ◽  
Alison Lacombe ◽  
Juming Tang ◽  
David F. Bridges ◽  
Shyam Sablani ◽  
...  
2014 ◽  
Vol 42 (3) ◽  
pp. 322-331 ◽  
Author(s):  
Y.-A. Jeon ◽  
S. Lee ◽  
Y. Lee ◽  
H.-S. Lee ◽  
J.S. Sung ◽  
...  

Author(s):  
Xinyao Wei ◽  
Tushar Verma ◽  
Mary-Grace C. Danao ◽  
Monica A. Ponder ◽  
Jeyamkondan Subbiah

2005 ◽  
Vol 68 (6) ◽  
pp. 1176-1187 ◽  
Author(s):  
KAYE V. SY ◽  
MELINDA B. MURRAY ◽  
M. DAVID HARRISON ◽  
LARRY R. BEUCHAT

Gaseous chlorine dioxide (ClO2) was evaluated for effectiveness in killing Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes on fresh-cut lettuce, cabbage, and carrot and Salmonella, yeasts, and molds on apples, peaches, tomatoes, and onions. Inoculum (100 μl, ca. 6.8 log CFU) containing five serotypes of Salmonella enterica, five strains of E. coli O157:H7, or five strains of L. monocytogenes was deposited on the skin and cut surfaces of fresh-cut vegetables, dried for 30 min at 22°C, held for 20 h at 4°C, and then incubated for 30 min at 22°C before treatment. The skin surfaces of apples, peaches, tomatoes, and onions were inoculated with 100 μl of a cell suspension (ca. 8.0 log CFU) containing five serotypes of Salmonella, and inoculated produce was allowed to dry for 20 to 22 h at 22°C before treatment. Treatment with ClO2 at 4.1 mg/liter significantly (α = 0.05) reduced the population of foodborne pathogens on all produce. Reductions resulting from this treatment were 3.13 to 4.42 log CFU/g for fresh-cut cabbage, 5.15 to 5.88 log CFU/g for fresh-cut carrots, 1.53 to 1.58 log CFU/g for fresh-cut lettuce, 4.21 log CFU per apple, 4.33 log CFU per tomato, 1.94 log CFU per onion, and 3.23 log CFU per peach. The highest reductions in yeast and mold populations resulting from the same treatment were 1.68 log CFU per apple and 2.65 log CFU per peach. Populations of yeasts and molds on tomatoes and onions were not significantly reduced by treatment with 4.1 mg/liter ClO2. Substantial reductions in populations of pathogens on apples, tomatoes, and onions but not peaches or fresh-cut cabbage, carrot, and lettuce were achieved by treatment with gaseous ClO2 without markedly adverse effects on sensory qualities.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 375
Author(s):  
Timilehin Martins Oyinloye ◽  
Won Byong Yoon

We investigated the effect of chlorine dioxide (ClO2) under low temperature drying to suppress rice cake stickiness during the cutting process by initiating the onset of retrogradation until the stickiness is minimized for shelf-life extension. The intermittent ClO2 application at low-temperature drying was conducted at 10 °C for different drying periods (0, 6, 12, 18, and 24 h). Texture analysis showed significant differences with increasing values of hardness (901.39 ± 53.87 to 12,653 ± 1689.35 g) and reduced values of modified adhesiveness (3614.37 ±578.23 to 534.81 ± 89.37 g). The evaluation of rice cake stickiness during the cutting process revealed an optimum drying period of 18 h with no significant difference (p ≤ 0.05) compared to the 24 h drying process. Microbial contamination during the drying process increased, with microbial load from 6.39 ± 0.37 to 7.94 ± 0.29 CFU/g. Intermittent ClO2 application at 22 ppm successfully reduced the microbial load by 63% during drying process. The inhibitory property of ClO2 was further analyzed on a sample with high initial microbial load (3.01 ± 0.14 CFU/g) using primary and modified secondary growth models fitted to all experimental storage temperatures (5–25 °C) with R2 values > 0.99. The model demonstrated a strong inhibition by ClO2 with microbial growth not exceeding the accepted population threshold (106 CFU/g) for toxin production. The shelf-life of rice cake was increased by 86 h and 432 h at room temperature (25 °C) and 5 °C respectively. Microbial inactivation via ClO2 treatment is a novel method for improved food storage without additional thermal sterilization or the use of an additional processing unit.


2017 ◽  
Vol 26 (2) ◽  
pp. 513-520 ◽  
Author(s):  
Armarynette Berrios-Rodriguez ◽  
Ocen M. Olanya ◽  
Bassam A. Annous ◽  
Jennifer M. Cassidy ◽  
Lynette Orellana ◽  
...  

2014 ◽  
Vol 77 (11) ◽  
pp. 1876-1881 ◽  
Author(s):  
VARA PRODDUK ◽  
BASSAM A. ANNOUS ◽  
LINSHU LIU ◽  
KIT L. YAM

Although freshly sprouted beans and grains are considered to be a source of nutrients, they have been associated with foodborne outbreaks. Sprouts provide good matrices for microbial localization and growth due to optimal conditions of temperature and humidity while sprouting. Also, the lack of a kill step postsprouting is a major safety concern. The objective of this work was to evaluate the effectiveness of chlorine dioxide gas treatment to reduce Salmonella on artificially inoculated mungbean sprouts. The effectiveness of gaseous chlorine dioxide (0.5 mg/liter of air) with or without tumbling (mechanical mixing) was compared with an aqueous chlorine (200 ppm) wash treatment. Tumbling the inoculated sprouts during the chlorine dioxide gas application for 15, 30, and 60 min reduced Salmonella populations by 3.0, 4.0, and 5.5 log CFU/g, respectively, as compared with 3.0, 3.0, and 4.0 log CFU/g reductions obtained without tumbling, respectively. A 2.0 log CFU/g reduction in Salmonella was achieved with an aqueous chlorine wash. The difference in microbial reduction between chlorine dioxide gas versus aqueous chlorine wash points to the important role of surface topography, pore structure, bacterial attachment, and/or biofilm formation on sprouts. These data suggested that chlorine dioxide gas was capable of penetrating and inactivating cells that are attached to inaccessible sites and/or are within biofilms on the sprout surface as compared with an aqueous chlorine wash. Consequently, scanning electron microscopy imaging indicated that chlorine dioxide gas treatment was capable of penetrating and inactivating cells attached to inaccessible sites and within biofilms on the sprout surfaces.


Sign in / Sign up

Export Citation Format

Share Document