Influence of cooking methods on antinutritional factors, oligosaccharides and protein quality of underutilized legume Macrotyloma uniflorum

2021 ◽  
pp. 110299
Author(s):  
Rahul Vashishth ◽  
A.D. Semwal ◽  
Mahadeva Naika ◽  
G.K. Sharma ◽  
Rahul Kumar
2012 ◽  
Vol 108 (S2) ◽  
pp. S315-S332 ◽  
Author(s):  
G. Sarwar Gilani ◽  
Chao Wu Xiao ◽  
Kevin A. Cockell

Dietary antinutritional factors have been reported to adversely affect the digestibility of protein, bioavailability of amino acids and protein quality of foods. Published data on these negative effects of major dietary antinutritional factors are summarized in this manuscript. Digestibility and the quality of mixed diets in developing countries are considerably lower than of those in developed regions. For example, the digestibility of protein in traditional diets from developing countries such as India, Guatemala and Brazil is considerably lower compared to that of protein in typical North American diets (54–78 versus 88–94 %). Poor digestibility of protein in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, is due to the presence of less digestible protein fractions, high levels of insoluble fibre, and/or high concentrations of antinutritional factors present endogenously or formed during processing. Examples of naturally occurring antinutritional factors include glucosinolates in mustard and canola protein products, trypsin inhibitors and haemagglutinins in legumes, tannins in legumes and cereals, gossypol in cottonseed protein products, and uricogenic nucleobases in yeast protein products. Heat/alkaline treatments of protein products may yield Maillard reaction compounds, oxidized forms of sulphur amino acids, D-amino acids and lysinoalanine (LAL, an unnatural nephrotoxic amino acid derivative). Among common food and feed protein products, soyabeans are the most concentrated source of trypsin inhibitors. The presence of high levels of dietary trypsin inhibitors from soyabeans, kidney beans or other grain legumes have been reported to cause substantial reductions in protein and amino acid digestibility (up to 50 %) and protein quality (up to 100 %) in rats and/or pigs. Similarly, the presence of high levels of tannins in sorghum and other cereals, fababean and other grain legumes can cause significant reductions (up to 23 %) in protein and amino acid digestibility in rats, poultry, and pigs. Normally encountered levels of phytates in cereals and legumes can reduce protein and amino acid digestibility by up to 10 %. D-amino acids and LAL formed during alkaline/heat treatment of lactalbumin, casein, soya protein or wheat protein are poorly digestible (less than 40 %), and their presence can reduce protein digestibility by up to 28 % in rats and pigs, and can cause a drastic reduction (100 %) in protein quality, as measured by rat growth methods. The adverse effects of antinutritional factors on protein digestibility and protein quality have been reported to be more pronounced in elderly rats (20-months old) compared to young (5-weeks old) rats, suggesting the use of old rats as a model for assessing the protein digestibility of products intended for the elderly.


Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 234
Author(s):  
Fatemah B. Alsalman ◽  
Hosahalli S. Ramaswamy

Chickpea cooking water (CCW), known as aquafaba, has potential as a replacement for egg whites due to its emulsion and foaming properties which come from the proteins and starch that leach out from chickpeas into the cooking water. High pressure (HP) processing has the ability to modify the functional characteristics of proteins. It is hypothesized that HP processing could favorably affect the functional properties of CCW proteins by influencing their structure. The objective of this study to evaluate the effect of HP treatment on the associated secondary structure, emulsion properties and thermal characteristics of CCW proteins. A central composite rotatable design is used with pressure level (227–573 MPa) and treatment time (6–24 min) as HP variables, and concentration of freeze dried CCW aquafaba powder (11–29%) as product variable, and compared to untreated CCW powder. HP improves aquafaba emulsion properties compared to control sample. HP reduces protein aggregates by 33.3%, while β-sheets decreases by 4.2–87.6% in which both correlated to increasing protein digestibility. α-helices drops by 50%. It affects the intensity of some HP treated samples, but not the trend of bands in most of them. HP treatment decreases Td and enthalpy because of increasing the degree of denaturation.


1962 ◽  
Vol 10 (5) ◽  
pp. 422-425 ◽  
Author(s):  
R. L. Larson ◽  
A. W. Halverson
Keyword(s):  

1993 ◽  
Vol 155-156 (1) ◽  
pp. 215-218 ◽  
Author(s):  
R. M. Welch ◽  
M. E. Smith ◽  
D. R. van Campen ◽  
S. C. Schaefer

1989 ◽  
Vol 39 (2) ◽  
pp. 201-208 ◽  
Author(s):  
Pasala Geervani ◽  
Bjorn O. Eggum

Author(s):  
F.E. Van Niekerk ◽  
C.H. Van Niekerk

Sixty-four Thoroughbred and Anglo-Arab mares aged 6-12 years were used, of which 40 were non-lactating and 24 lactating. Foals from these 24 mares were weaned at the age of 6 months. Non-lactating and lactating mares were divided into 4 dietary groups each. The total daily protein intake and the protein quality (essential amino-acid content) differed in the 4 groups of non-lactating and 4 groups of lactating mares. The mares were covered and the effect of the quantity and quality of dietary protein on serum progestagen concentrations during pregnancy was studied. A sharp decline in serum progestagen concentrations was recorded in all dietary groups from Days 18 to 40 of pregnancy, with some individual mares reaching values of less than 4 ng/mℓ. Serum progestagen concentrations recorded in some of the non-lactating mares on the low-quality protein diet increased to higher values (p<0.05) than those of mares in the other 3 dietary groups at 35-140 days of pregnancy. A similar trend was observed for the lactating mares on a low-quality protein diet at 30-84 days of pregnancy. No such trends were observed in any of the other dietary groups. High-quality protein supplementation increased serum progestagen concentrations during the 1st 30 days of pregnancy. Lactation depressed serum progestagen concentrations until after the foals were weaned.


Sign in / Sign up

Export Citation Format

Share Document