Encapsulation and controlled release of phycocyanin during the in vitro digestion using polysaccharide-added double emulsions (W1/O/W2)

2021 ◽  
pp. 100249
Author(s):  
Teixé-Roig Júlia ◽  
Oms-Oliu Gemma ◽  
Ballesté-Muñoz Sara ◽  
Odriozola-Serrano Isabel ◽  
Martín-Belloso Olga
Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2808 ◽  
Author(s):  
Weili Xu ◽  
Yang Yang ◽  
Sophia Xue ◽  
John Shi ◽  
Loong-Tak Lim ◽  
...  

The effects of in vitro batch digestion on water-in-oil-in-water (W/O/W) double emulsions encapsulated with anthocyanins (ACNs) from grape skin were investigated. The double emulsions exhibited the monomodal distribution (d = 686 ± 25 nm) showing relatively high encapsulation efficiency (87.74 ± 3.12%). After in vitro mouth digestion, the droplet size (d = 771 ± 26 nm) was significantly increased (p < 0.05). The double W1/O/W2 emulsions became a single W1/O emulsion due to proteolysis, which were coalesced together to form big particles with significant increases (p < 0.01) of average droplet sizes (d > 5 µm) after gastric digestion. During intestinal digestion, W1/O droplets were broken to give empty oil droplets and released ACNs in inner water phase, and the average droplet sizes (d < 260 nm) decreased significantly (p < 0.05). Our results indicated that ACNs were effectively protected by W/O/W double emulsions against in vitro mouth digestion and gastric, and were delivered in the simulated small intestine phase.


Author(s):  
Mashkura Ashrafi ◽  
Jakir Ahmed Chowdhury ◽  
Md Selim Reza

Capsules of different formulations were prepared by using a hydrophilic polymer, xanthan gum and a filler Ludipress. Metformin hydrochloride, which is an anti-diabetic agent, was used as a model drug here with the aim to formulate sustained release capsules. In the first 6 formulations, metformin hydrochloride and xanthan gum were used in different ratio. Later, Ludipress was added to the formulations in a percentage of 8% to 41%. The total procedure was carried out by physical mixing of the ingredients and filling in capsule shells of size ‘1’. As metformin hydrochloride is a highly water soluble drug, the dissolution test was done in 250 ml distilled water in a thermal shaker (Memmert) with a shaking speed of 50 rpm at 370C &plusmn 0.50C for 6 hours. After the dissolution, the data were treated with different kinetic models. The results found from the graphs and data show that the formulations follow the Higuchian release pattern as they showed correlation coefficients greater than 0.99 and the sustaining effect of the formulations was very high when the xanthan gum was used in a very high ratio with the drug. It was also investigated that the Ludipress extended the sustaining effect of the formulation to some extent. But after a certain period, Ludipress did not show any significant effect as the pores made by the xanthan gum network were already blocked. It is found here that when the metformin hydrochloride and the xanthan gum ratio was 1:1, showed a high percentage of drug release, i.e. 91.80% of drug was released after 6 hours. But With a xanthan gum and metformin hydrochloride ratio of 6:1, a very slow release of the drug was obtained. Only 66.68% of the drug was released after 6 hours. The percent loading in this case was 14%. Again, when Ludipress was used in high ratio, it was found to retard the release rate more prominently. Key words: Metformin Hydrochloride, Xanthan Gum, Controlled release capsule Dhaka Univ. J. Pharm. Sci. Vol.4(1) 2005 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


Author(s):  
Kranthi Kumar Kotta ◽  
L. Srinivas

The present investigation focuses on the development of mucoadhesive tablets of captopril which are designed to prolong the gastric residence time after oral administration. Matrix tablets of captopril were formulated using four mucoadhesive polymers namely guar gum, xanthan gum, HPMC K4M and HPMC K15M and studied for parameters such as weight variation, thickness, hardness, content uniformity, swelling index, mucoadhesive force and in vitro drug release. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M provide slow release of captopril over period of 12 hr and were found suitable for maintenance portion of oral controlled release tablets. The cumulative % of drug release of formulation F9 and F10 were 90 and 92, respectively. In vitro release from these tablets was diffusion controlled and followed zero order kinetics. The ‘n’ values obtained from the pappas-karsemeyer equation suggested that all the formulation showed drug release by non-fickian diffusion mechanism. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M (1:1) were established to be the optimum formulation with optimum bioadhesive force, swelling index & desired invitro drug release. This product was further subjected to stability study, the results of which indicated no significant change with respect to Adhesive strength and in vitro drug release study.


2019 ◽  
Vol 16 (3) ◽  
pp. 347-352 ◽  
Author(s):  
M. Vlachou ◽  
G. Stavrou ◽  
A. Siamidi ◽  
S. Flitouri ◽  
V. Ioannidou ◽  
...  

Background: N-Acetylserotonin (NAS, N-acetyl-5-hydroxytryptamine) is the immediate precursor of the neurohormone melatonin (MT, N-acetyl-5-methoxytryptamine), which regulates sleep and wake cycles. NAS is produced by the N-acetylation of serotonin and is converted to melatonin via the action of Acetylserotonin O-methyltransferase (ASMT). Like melatonin, NAS acts as an agonist on the melatonin receptors MT1, MT2, and MT3. However, as NAS is abundant in specific brain areas, separate from serotonin and melatonin, it may also have discrete central effects. Indicatively, it has been reported that NAS may play a role in the antidepressant effects of Selective Serotonin Reuptake Inhibitors (SSRIs) and Monoamine Oxidase Inhibitors (MAOIs). </P><P> Objective: To decipher the controlled release characteristics of the active substances (NAS and MT) in a quick initial pace, aiming at a satisfactory sleep-onset related anti-depressive profile and prolonged release, thereafter, targeting at coping with poor sleep quality problems. </P><P> Methods: A series of hydrophilic matrix tablets involving as excipients, hydroxypropylmethylcellulose (HPMC) K15M, low viscosity sodium alginate, lactose monohydrate, and polyvinylpyrrolidone (PVP) M.W.: 10.000 and 55.000) was developed and tested at two dissolution media (pH 1.2 and 7.4). </P><P> Results: The results showed that commonly used excipients with different physicochemical properties govern the controlled release of NAS and MT from solid matrix systems. </P><P> Conclusions: We have demonstrated how broadly used excipients affect the in vitro controlled release of NAS and MT from solid pharmaceutical formulations. Currently, we extend our studies on the controlled release of these drugs using various other biopolymers/formulants of different physicochemical characteristics, which will help to highlight the discrete release profiles of NAS and MT.


Sign in / Sign up

Export Citation Format

Share Document