Long-term effects of canopy opening and liming on leaf litter production, and on leaf litter and fine-root decomposition in a European beech (Fagus sylvatica L.) forest

2015 ◽  
Vol 338 ◽  
pp. 183-190 ◽  
Author(s):  
Na Lin ◽  
Norbert Bartsch ◽  
Steffi Heinrichs ◽  
Torsten Vor
2004 ◽  
Vol 34 (10) ◽  
pp. 2037-2048 ◽  
Author(s):  
Murray R Davis ◽  
Robert B Allen ◽  
Peter W Clinton

To test whether increased nitrogen (N) availability might increase productivity in maturing mountain beech (Nothofagus solandri var. cliffortioides (Hook. f.) Poole) forest in central South Island, New Zealand, we applied N to 25-year-old sapling and 125-year-old pole stands. Nitrogen fertilizer increased foliar and fine-root N concentrations, fine-root growth, and leaf litter production in both sapling and pole stands but had no effect on stem basal area increment or individual leaf area, and it decreased individual leaf mass marginally. Heavy flowering and seeding occurred in the second year after fertilizer was applied, and N increased production of both. Leaf litter production and flowering responded similarly to N in sapling and pole stands, but N increased fine-root and seed productivity more in pole stands than in sapling stands, confirming our hypothesis that productivity of pole stands was more limited by low N availability. Resource allocation to fine roots and seed production may have restricted stem basal area increment response to N in the short term. Pole stands had higher leaf δ13C values than sapling stands. It is concluded that both low N availability and moisture stress may contribute to the decline in productivity and wood biomass previously found in mature mountain beech stands.


2007 ◽  
Vol 298 (1-2) ◽  
pp. 69-79 ◽  
Author(s):  
Anika K. Richter ◽  
Lorenz Walthert ◽  
Emmanuel Frossard ◽  
Ivano Brunner

2011 ◽  
Vol 57 (No. 7) ◽  
pp. 293-302 ◽  
Author(s):  
P. Petráš ◽  
J. Mecko

Correlations of increment indexes with average monthly temperatures and total monthly precipitation were studied on annual ring series of 455 trees of Norway spruce (Picea abies [L.] Karst.), sessile oak (Quercus petrea Liebl.) and European beech (Fagus sylvatica L.). Data on precipitation from the period 1901–2005 and on temperatures from the period 1931–2005 were used. Statistically significant dependences with correlation coefficients in the range of 0.2–0.5 were confirmed. All tree species react positively to precipitation mainly in June and July. An increase in precipitation by 1 mm when compared with the long-term average results in an increase in increment index of spruce almost by 0.13%. This index in oak and beech increases only by a half value of the value for spruce. Precipitation from the second half of the vegetation period of the previous year is also important. Higher temperatures during the vegetation period affect increment changes mostly negatively. With temperature increase by 1°C, when compared with the long-term average, the increment index of trees decreases by about 1–2%.


FLORESTA ◽  
2019 ◽  
Vol 49 (3) ◽  
pp. 373
Author(s):  
Victória Maria Monteiro Mendonça ◽  
Gilsonley Lopes Santos ◽  
Marcos Gervasio Gervasio Pereira ◽  
Carlos Eduardo Gabriel Menezes

The deposition of leaf litter on the forest floor is influenced by biotic and abiotic factors where forest fragments are inserted, which is a major source of nutrients to the soil. The objective of this study was to evaluate the influence of the change in relief conditions (landform) in leaf litter contribution and nutrient content in a Submontane Seasonal Semi-deciduous Forest in Pinheiral (state of Rio de Janeiro, Brazil). It was selected two adjacent landforms with convex and concave relief type and they divided into small sites (SS), obeying the variation of the slope and topographic gradient. Five conic collectors with an area of 0.2834 m² were installed in each SS, totaling 30 collectors. The collections of leaf litter were carried out every 30 days during a year. The material retained in the traps was separated as the fractions; leaves, twigs, reproductive and other material to assess the proportion of each fraction in the leaf litter production and nutrient content of the fraction leaves. The contribution and nutrient content of litter are influenced by the type of landform and seasons of the year. The highest contribution was observed in the dry season, in the lower and middle SS of the landforms, and the highest nutrient levels occurred in the convex landform during the rainy season.


2020 ◽  
Vol 50 (7) ◽  
pp. 689-703 ◽  
Author(s):  
Hans Pretzsch ◽  
Torben Hilmers ◽  
Peter Biber ◽  
Admir Avdagić ◽  
Franz Binder ◽  
...  

In Europe, mixed mountain forests, primarily comprised of Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.), and European beech (Fagus sylvatica L.), cover about 10 × 106 ha at elevations between ∼600 and 1600 m a.s.l. These forests provide invaluable ecosystem services. However, the growth of these forests and the competition among their main species are expected to be strongly affected by climate warming. In this study, we analyzed the growth development of spruce, fir, and beech in moist mixed mountain forests in Europe over the last 300 years. Based on tree-ring analyses on long-term observational plots, we found for all three species (i) a nondecelerating, linear diameter growth trend spanning more than 300 years; (ii) increased growth levels and trends, the latter being particularly pronounced for fir and beech; and (iii) an elevation-dependent change of fir and beech growth. Whereas in the past, the growth was highest at lower elevations, today’s growth is superior at higher elevations. This spatiotemporal pattern indicates significant changes in the growth and interspecific competition at the expense of spruce in mixed mountain forests. We discuss possible causes, consequences, and silvicultural implications of these distinct growth changes in mixed mountain forests.


Sign in / Sign up

Export Citation Format

Share Document