Stand level volume increment in relation to leaf area index of Austrocedrus chilensis and Nothofagus dombeyi mixed forests of Patagonia, Argentina

2021 ◽  
Vol 494 ◽  
pp. 119337
Author(s):  
Marina Caselli ◽  
Gabriel Ángel Loguercio ◽  
María Florencia Urretavizcaya ◽  
Guillermo Emilio Defossé
Author(s):  
Audrey Maheu ◽  
Cybèle Cholet ◽  
Rebeca Cordero Montoya ◽  
Louis Duchesne

In land surface models, vegetation is often described using plant functional types (PFTs), a classification that aggregates plant species into a few groups based on similar characteristics. Within-PFT variability of these characteristics can introduce considerable uncertainty in the simulation of water fluxes in forests. Our objectives were to (i) compare the variability of the annual maximum leaf area index (LAImax) within and between PFTs and (ii) assess whether this variability leads to significant differences in simulated water fluxes at a regional scale. We classified our study region in southwestern Quebec (Canada) into three PFTs (evergreen needleleaf, deciduous broadleaf, and mixed forests) and characterized LAImax using remotely sensed MODIS-LAI data. We simulated water fluxes with the Canadian Land Surface Scheme (CLASS) and performed a sensitivity analysis. We found that within-PFT variability of LAImax was 1.7 times more important than variability between PFTs, with similar mean values for the two dominant PFTs, deciduous broadleaf forests (6.6 m2·m−2) and mixed forests (6.3 m2·m−2). In CLASS, varying LAImax within the observed range of values (4.0–7.5 m2·m−2) led to changes of less than 2% in mean evapotranspiration. Overall, LAImax is likely not an important driver of the spatial variability of water fluxes at the regional level.


2021 ◽  
Vol 13 (16) ◽  
pp. 3069
Author(s):  
Yadong Liu ◽  
Junhwan Kim ◽  
David H. Fleisher ◽  
Kwang Soo Kim

Seasonal forecasts of crop yield are important components for agricultural policy decisions and farmer planning. A wide range of input data are often needed to forecast crop yield in a region where sophisticated approaches such as machine learning and process-based models are used. This requires considerable effort for data preparation in addition to identifying data sources. Here, we propose a simpler approach called the Analogy Based Crop-yield (ABC) forecast scheme to make timely and accurate prediction of regional crop yield using a minimum set of inputs. In the ABC method, a growing season from a prior long-term period, e.g., 10 years, is first identified as analogous to the current season by the use of a similarity index based on the time series leaf area index (LAI) patterns. Crop yield in the given growing season is then forecasted using the weighted yield average reported in the analogous seasons for the area of interest. The ABC approach was used to predict corn and soybean yields in the Midwestern U.S. at the county level for the period of 2017–2019. The MOD15A2H, which is a satellite data product for LAI, was used to compile inputs. The mean absolute percentage error (MAPE) of crop yield forecasts was <10% for corn and soybean in each growing season when the time series of LAI from the day of year 89 to 209 was used as inputs to the ABC approach. The prediction error for the ABC approach was comparable to results from a deep neural network model that relied on soil and weather data as well as satellite data in a previous study. These results indicate that the ABC approach allowed for crop yield forecast with a lead-time of at least two months before harvest. In particular, the ABC scheme would be useful for regions where crop yield forecasts are limited by availability of reliable environmental data.


2021 ◽  
Vol 54 (3) ◽  
pp. 231-243
Author(s):  
Chao Liu ◽  
Zhenghua Hu ◽  
Rui Kong ◽  
Lingfei Yu ◽  
Yuanyuan Wang ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 208
Author(s):  
Daniel Queirós da Silva ◽  
André Silva Aguiar ◽  
Filipe Neves dos Santos ◽  
Armando Jorge Sousa ◽  
Danilo Rabino ◽  
...  

Smart and precision agriculture concepts require that the farmer measures all relevant variables in a continuous way and processes this information in order to build better prescription maps and to predict crop yield. These maps feed machinery with variable rate technology to apply the correct amount of products in the right time and place, to improve farm profitability. One of the most relevant information to estimate the farm yield is the Leaf Area Index. Traditionally, this index can be obtained from manual measurements or from aerial imagery: the former is time consuming and the latter requires the use of drones or aerial services. This work presents an optical sensing-based hardware module that can be attached to existing autonomous or guided terrestrial vehicles. During the normal operation, the module collects periodic geo-referenced monocular images and laser data. With that data a suggested processing pipeline, based on open-source software and composed by Structure from Motion, Multi-View Stereo and point cloud registration stages, can extract Leaf Area Index and other crop-related features. Additionally, in this work, a benchmark of software tools is made. The hardware module and pipeline were validated considering real data acquired in two vineyards—Portugal and Italy. A dataset with sensory data collected by the module was made publicly available. Results demonstrated that: the system provides reliable and precise data on the surrounding environment and the pipeline is capable of computing volume and occupancy area from the acquired data.


Sign in / Sign up

Export Citation Format

Share Document