A mathematical model to predict ripening degree of kimchi , a Korean fermented vegetable for meeting consumer preference and controlling shelf life on real time basis

2017 ◽  
Vol 12 ◽  
pp. 23-27 ◽  
Author(s):  
Chalalai Jaisan ◽  
Dong Sun Lee
2020 ◽  
Author(s):  
Aditi Ghosh ◽  
Claire Onsager ◽  
Leon Arriola ◽  
Andrew Mason ◽  
William Lee ◽  
...  

AbstractIschaemic Hepatitis (IH) or Hypoxic Hepatitis (HH) also known as centrilobular liver cell necrosis is an acute liver injury characterized by a rapid increase in serum aminotransferase. The liver injury typically results from another underlying medical conditions like cardiac failure, respiratory failure and septic shock in which the liver becomes damaged due to deprivation of either blood or oxygen. IH is a potentially lethal condition which is often preventable if diagnosed properly. Unfortunately, mechanism that causes IH are often not well understood, making it difficult to diagnose or accurately quantify the patterns of related biomakers. In most cases, currently the only way to determine a case of IH (i.e., to diagnose it) is to rule out all other possible conditions for other liver injuries. A better understanding of the liver’s response to IH is necessary to aid in its diagnosis, measurement and improve outcomes. The goal of this study, is to identify mechanisms that can alter a few associated biomarkers for reducing density of damaged hepatocytes, and thus reduce chances of IH. To this end, we develop a mathematical model capturing dynamics of hepatocytes in the liver through the rise and fall of associated liver enzymes aspartate transaminase (AST), alanine transaminase (ALT) and lactate dehydrogenase (LDH) related to condition of IH. The model analysis provides a novel approach to predict the level of biomarkers given variations in the systemic oxygen in the body. Using IH patient data in US, novel model parameters are described and then estimated for the first time to capture real time dynamics of hepatocytes in the presence and absence of IH condition. Different scenarios of patient conditions were also analyzed and validated using empirical information. This study and its results may allow physicians to estimate the extent of liver damage in a IH patient based on their enzyme levels and receive faster treatment on real time basis.


1991 ◽  
Vol 24 (6) ◽  
pp. 171-177 ◽  
Author(s):  
Zeng Fantang ◽  
Xu Zhencheng ◽  
Chen Xiancheng

A real-time mathematical model for three-dimensional tidal flow and water quality is presented in this paper. A control-volume-based difference method and a “power interpolation distribution” advocated by Patankar (1984) have been employed, and a concept of “separating the top-layer water” has been developed to solve the movable boundary problem. The model is unconditionally stable and convergent. Practical application of the model is illustrated by an example for the Pearl River Estuary.


LWT ◽  
2021 ◽  
pp. 112097
Author(s):  
Dea Korcari ◽  
Riccardo Secchiero ◽  
Monica Laureati ◽  
Alessandra Marti ◽  
Gaetano Cardone ◽  
...  

2021 ◽  
Vol 83 (5) ◽  
Author(s):  
Wang Jin ◽  
Loredana Spoerri ◽  
Nikolas K. Haass ◽  
Matthew J. Simpson

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2740
Author(s):  
Antonia Albrecht ◽  
Maureen Mittler ◽  
Martin Hebel ◽  
Claudia Waldhans ◽  
Ulrike Herbert ◽  
...  

The high perishability of fresh meat results in short sales and consumption periods, which can lead to high amounts of food waste, especially when a fixed best-before date is stated. Thus, the aim of this study was the development of a real-time dynamic shelf-life criterion (DSLC) for fresh pork filets based on a multi-model approach combining predictive microbiology and sensory modeling. Therefore, 647 samples of ma-packed pork loin were investigated in isothermal and non-isothermal storage trials. For the identification of the most suitable spoilage predictors, typical meat quality parameters (pH-value, color, texture, and sensory characteristics) as well as microbial contamination (total viable count, Pseudomonas spp., lactic acid bacteria, Brochothrix thermosphacta, Enterobacteriaceae) were analyzed at specific investigation points. Dynamic modeling was conducted using a combination of the modified Gompertz model (microbial data) or a linear approach (sensory data) and the Arrhenius model. Based on these models, a four-point scale grading system for the DSLC was developed to predict the product status and shelf-life as a function of temperature data in the supply chain. The applicability of the DSLC was validated in a pilot study under real chain conditions and showed an accurate real-time prediction of the product status.


2020 ◽  
Vol 1 (4) ◽  
pp. 46-60
Author(s):  
B.B. Kositsyn ◽  

Introduction. The use of the method of full-scale-mathematical modeling in “real time” opens up wide opportunities associated with the analysis of the modes of operation of the “man – vehicle – environment” system, as well as the study of the loading of units and assemblies of vehicles. The existing research complexes of full-scale mathematical modeling are suitable for obtaining most of the indicators usually determined by full-scale tests. The difference lies in the ability to fully control the course of virtual testing, recording any parameters of the vehicle movement, taking into account the “human factor”, as well as complete safety of the experiment. Purpose of research. The purpose of this work is to create a mathematical model of the dynam-ics of a wheeled vehicle, suitable for use in such a complex of full-scale mathematical modeling and assessment of the load of transmission units in conditions close to real operation. Methodology and methods. The proposed model is based on the existing model of the dynamics of a wheeled vehicle developed at Bauman Moscow State Technical University. Within the framework of the model, the dynamics of a vehicle is described as a plane motion of a rigid body in a horizontal plane. The principle of possible displacements is applied to determine the normal reac-tions of the bearing surface. The interaction of the wheel with the ground in the plane of the support base is described using an approach based on the “friction ellipse” concept. To enable the driver and operator of the full-scale mathematical modeling complex to drive a virtual vehicle in “real time” mode, the mathematical model is supplemented with a control system that communicates between the control parameter set by the driver by pressing the accelerator and brake pedals and the control actions of the vehicle's transmission units, such as: an electric machine, an internal combustion en-gine, a hydrodynamic retarder and a brake system. The article presents a block diagram of the de-veloped control algorithm, as well as approbation of the system's operation in a complex of full-scale mathematical modeling. Results and scientific novelty. A mathematical model of the dynamics of a wheeled vehicle was developed. It opens up wide possibilities for studying the modes of operation of the “driver-vehicle-environment” system in “real time”, using a complex of full-scale mathematical modeling. Practical significance. A mathematical model of the dynamics of a wheeled vehicle was devel-oped. It is supplemented with an algorithm for the distribution of traction / braking torques between the transmission units, which provide a connection between the driver's pressing on the accelerator / brake pedal and the control parameters of each of the units.


2021 ◽  
Author(s):  
Ramien Sereshk

It is commonly assumed that the persistence model, using day-old monitoring results, will provide accurate estimates of real-time bacteriological concentrations in beach water. However, the persistence model frequently provides incorrect results. This study: 1. develops a site-specific predictive model, based on factors significantly influencing water quality at Beachway Park; 2. determines the feasibility of the site-specific predictive model for use in accurately predicting near real-time E. coli levels. A site-specific predictive model, developed for Beachway Park, was evaluated and the results were compared to the persistence model. This critical performance evaluation helped to identify the inherent inaccuracy of the persistence model for Beachway Park, which renders it an unacceptable approach for safeguarding public health from recreational water-borne illnesses. The persistence model, supplemented with a site-specific predictive model, is recommended as a feasible method to accurately predict bacterial levels in water on a near real-time basis.


2002 ◽  
Vol 128 (3) ◽  
pp. 506-517 ◽  
Author(s):  
S. M. Camporeale ◽  
B. Fortunato ◽  
M. Mastrovito

A high-fidelity real-time simulation code based on a lumped, nonlinear representation of gas turbine components is presented. The code is a general-purpose simulation software environment useful for setting up and testing control equipments. The mathematical model and the numerical procedure are specially developed in order to efficiently solve the set of algebraic and ordinary differential equations that describe the dynamic behavior of gas turbine engines. For high-fidelity purposes, the mathematical model takes into account the actual composition of the working gases and the variation of the specific heats with the temperature, including a stage-by-stage model of the air-cooled expansion. The paper presents the model and the adopted solver procedure. The code, developed in Matlab-Simulink using an object-oriented approach, is flexible and can be easily adapted to any kind of plant configuration. Simulation tests of the transients after load rejection have been carried out for a single-shaft heavy-duty gas turbine and a double-shaft aero-derivative industrial engine. Time plots of the main variables that describe the gas turbine dynamic behavior are shown and the results regarding the computational time per time step are discussed.


Sign in / Sign up

Export Citation Format

Share Document