Technological properties, shelf life and consumer preference of spelt-based sourdough bread using novel, selected starter cultures

LWT ◽  
2021 ◽  
pp. 112097
Author(s):  
Dea Korcari ◽  
Riccardo Secchiero ◽  
Monica Laureati ◽  
Alessandra Marti ◽  
Gaetano Cardone ◽  
...  
Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1165 ◽  
Author(s):  
Mansi Limbad ◽  
Noemi Gutierrez Maddox ◽  
Nazimah Hamid ◽  
Kevin Kantono

There is a recognized need for formulating functional food products using selected lactic acid bacteria (LAB) starter cultures from various sources such as kefir, yoghurt or kombucha that have health benefits. The principle objective of this study was to investigate the use of a coconut water kefir-based fermentation starter culture using Lactobacillus fermentum and Lactobacillus plantarum to develop a sourdough bread. Check-all-that-apply (CATA) sensory profiling was used in this study to evaluate the sensory profile of sourdough breads that varied with culture type, culture concentrations, with and without added yeast, and with fermentation for 18 and 24 h. Based on correspondence analysis (CA) of the CATA results, bread samples with positive sensory attributes were chosen for further physicochemical analysis. Physicochemical analyses (texture, proximate composition, shelf life, carboxylic acid analysis and amino acid analysis) were carried out on breads formulated with starter culture concentrations of 8.30 log CFU/mL of L. fermentum, 4.90 log CFU/mL of L. fermentum and 9.60 log CFU/mL of L. plantarum, each fermented for 24 h without baker’s yeast. The bread sample that was formulated with a coconut water kefir (CWK) starter culture containing 9.60 log CFU/mL of L. plantarum, without dry yeast and fermented for 24 h, had significantly higher values for almost all amino acids and a lower protein content compared to samples formulated using CWK cultures containing 8.30 log CFU/mL of L. fermentum and 4.90 log CFU/mL of L. fermentum, both without dry yeast and fermented for 24 h. The bread sample formulated with CWK starter culture containing 9.60 log CFU/mL of L. plantarum, without dry yeast and fermented for 24 h, also produced significant quantities of organic acids (pyruvic acid, acetic acid, lactic acid and succinic acid). These changes in the physicochemical properties can improve overall bread quality in terms of flavor, shelf life, texture and nutritional value.


2014 ◽  
Vol 6 (2) ◽  
pp. 426-429
Author(s):  
Nandini Math ◽  
K. S. Jagadeesh ◽  
Shakuntala Masur ◽  
Pushpa Bharati

The lactic fermentation of cereals is known to improve the food quality through the development of flavor, enhancement of the nutritional value and shelf life, and by removing toxic or antinutritional factors of food products. Lactic acid bacteria (LAB) strains are able to improve the shelf life of several food products. The efficiency of the LAB cultures determined in in vitro assays was confirmed in bread manufacture. The sourbread prepared using 50 per cent yeast and 50 per cent LAB starter (based on cell density) was found to be superior to the conventional bread in textural characteristics, flavor, appearance and even taste. It contained enough protein (10.15%) and the least fat value (7.68%). It scored the highest acceptability index of 81.70. These results point out the advantages of using selected LAB strains as starter cultures for sourdough fermentation.


Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 29
Author(s):  
Stavros Plessas

The application of sourdough is considered to be a key tool for the production of high-quality bread. Several advantages have been presented through the application of sourdough in bread making, such as increased shelf life, improved aromatic profiles and sensory characteristics, increased nutritional value, and health benefits. Technological benefits have also been recorded, such as the successful application of sourdough in gluten-free breads. Likewise, an upsurge of interest in sourdough applications in bread making as well as in other foodstuffs (pasta) has been witnessed in recent years. Many factors are considered important for sourdough preparations; however, the proper selection of the starter cultures is considered the most central. This Special Issue of Fermentation aims to disseminate recent innovative research regarding sourdough bread making, as well as authoritative reviews that compile information from previously published material.


2021 ◽  
pp. 1-7
Author(s):  
Harutoshi Tsuda ◽  
Kana Kodama

Abstract This paper reveals the technological properties of lactic acid bacteria isolated from raw milk (colostrum and mature milk) of Wagyu cattle raised in Okayama Prefecture, Japan. Isolates were identified based on their physiological and biochemical characteristics as well as 16S rDNA sequence analysis. Streptococcus lutetiensis and Lactobacillus plantarum showed high acid and diacetyl-acetoin production in milk after 24 h of incubation at 40 and 30°C, respectively. These strains are thought to have potential for use as starter cultures and adjunct cultures for fermented dairy products.


Author(s):  
Yu. Yudina ◽  
S. Vasylenko ◽  
N. Zhabanos ◽  
N. Furyk

We investigated the industrial important properties of leuconostocs that make them possible to use it in starter cultures for the dairy industry (fermented and gas-forming activities, resistance for NaCl, pH, sensitivity to bacteriophages, antagonistic activity against coliform bacteria). We have developed the nutritional medium for their cultivation with the justification of the carbohydrate component and identified cultivation temperature of microorganisms.


Anaerobe ◽  
2011 ◽  
Vol 17 (6) ◽  
pp. 486-489 ◽  
Author(s):  
S. Plessas ◽  
A. Alexopoulos ◽  
I. Mantzourani ◽  
A. Koutinas ◽  
C. Voidarou ◽  
...  

Foods ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 40 ◽  
Author(s):  
Ioanna Mantzourani ◽  
Antonia Terpou ◽  
Athanasios Alexopoulos ◽  
Eugenia Bezirtzoglou ◽  
Stavros Plessas

In the present study the effect of innovative biocatalysts as starter cultures in sourdough bread making was explored. The biocatalysts consisted of Lactobacillus paracasei K5 and Lactobacillus bulgaricus ATCC 11842 (in single and mixed form), immobilized on delignified wheat bran (DWB), and freeze dried without cryoprotectants. The parameters monitored were physicochemical characteristics, mold and rope spoilage appearance, volatile composition, and organoleptic characteristics. Results obtained showed that both biocatalysts exhibit good fermentative activity. However, the best results were achieved when freeze-dried immobilized L. paracasei K5 was applied as a single culture. In particular, the produced bread had a higher acidity (8.67 mL 0.1 N NaOH) and higher organic load (2.90 g/kg lactic acid and 1.11 g/kg acetic acid). This outcome was the main reason why this bread was preserved more regarding mold spoilage (14 days) and rope spoilage (12 days), respectively. In addition, the employment of freeze-dried immobilized L. paracasei K5 led to bread with better aromatic profile in terms of concentrations and number of volatile compounds produced as gas chromatography/mass spectrometry (GC/MS) analysis proved. Finally, no significant differences were observed through sensorial tests. Last but not least, it should be highlighted that the used microorganisms were cultured in cheese whey, minimizing the cost of the proposed biotechnological procedure.


2020 ◽  
Vol 29 (11) ◽  
pp. 1483-1490
Author(s):  
Lingwei Meng ◽  
Sang Moo Kim ◽  
Dongjie Zhang ◽  
Zhijiang Li

1995 ◽  
Vol 58 (9) ◽  
pp. 1007-1013 ◽  
Author(s):  
M. R. BLAKE ◽  
B. C. WEIMER ◽  
D. J. MCMAHON ◽  
P. A. SAVELLO

Heat treatments of milk between 100 and 145°C produce a new type of product with a shelf life of 15 to 30 days at 7°C, which is termed extended shelf life (ESL) milk. Little information is available on the safety and sensory qualities of this product. Extended shelf life milk is being processed commercially to expand the distribution area of fluid milk products. After arrival at market, this product still has the shelf life of a pasteurized product. In this study milk was processed by direct steam injection at temperatures between 100 and 140°C for 4 or 12 s. Holding time did not significantly affect the sensory quality of the milk. A trained taste panel found cooked flavor and other off flavors varied significantly with increasing processing temperature and storage time. There were no significant differences noted in cooked or off flavors between 132 and 140°C. Psychrotrophic Bacillus species were isolated from milk processed at and below 132°C, while no organisms were isolated from milk processed at temperatures at or above 134°C. Consumer preference panels indicated consumers preferred milk processed at 134°C for 4 s to ultrahigh-temperature (UHT) processed milk, although there was a slight preference for high-temperature short-time processed (HTST) milk compared to milk processed at 134°C for 4 s. Higher temperatures had a less destructive effect on lipase activity, while storage time did not significantly affect lipase activity.


2007 ◽  
Vol 70 (11) ◽  
pp. 2512-2517 ◽  
Author(s):  
C. REVIRIEGO ◽  
L. FERNÁNDEZ ◽  
J. M. RODRÍGUEZ

Food-grade heterologous production of pediocin PA-1 in nisin-producing and non–nisin-producing Lactococcus lactis strains, previously selected because of their technological properties for cheese making, was achieved. Plasmid pGA1, which contains the complete pediocin operon under the control of the strong P32 promoter and is devoid of any antibiotic marker, was introduced into L. lactis ESI 153 and L. lactis ESI 515 (Nis+). Transformation of L. lactis ESI 515 with pGA1 did not affect its ability to produce nisin. The antimicrobial activity of the pediocin-producing transformants on the survival of Listeria innocua SA1 during cheese ripening was also investigated. Cheeses were manufactured from milk inoculated with 1% of the lactic culture and with or without approximately 4 log CFU/ml of the Listeria strain. L. lactis ESI 153, L. lactis ESI 515, and their transformants (L. lactis GA1 and GA2, respectively) were used as starter cultures. At the end of the ripening period, counts of L. innocua in cheeses made with the bacteriocin-producing lactococcal strains were below 50 CFU/g in the L. lactis GA1 cheeses and below 25 CFU/g in the L. lactis GA2 ones, compared with 3.7 million CFU/g for the controls without nisin or pediocin production.


Sign in / Sign up

Export Citation Format

Share Document