The role of Nrf2 in acute kidney injury: Novel molecular mechanisms and therapeutic approaches

2020 ◽  
Vol 158 ◽  
pp. 1-12
Author(s):  
Wei Wei ◽  
Ning Ma ◽  
Xiaoye Fan ◽  
Qinlei Yu ◽  
Xinxin Ci
Nephron ◽  
2020 ◽  
Vol 144 (12) ◽  
pp. 609-612
Author(s):  
Abeda Jamadar ◽  
Reena Rao

Acute kidney injury (AKI) is a common clinical syndrome that involves renal tubular epithelial cell death and leads to acute decline in renal function. Improper tubular regeneration following AKI often leads to CKD. We discuss the role of a serine/threonine protein kinase called glycogen synthase kinase-3 (GSK3) in renal tubular injury and renal fibrosis. We also highlight the importance of GSK3 as a potential drug target in AKI patients and molecular mechanisms promoting tissue regeneration.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 338 ◽  
Author(s):  
Ying Wang ◽  
Juan Cai ◽  
Chengyuan Tang ◽  
Zheng Dong

Acute kidney injury (AKI) is a major kidney disease characterized by rapid decline of renal function. Besides its acute consequence of high mortality, AKI has recently been recognized as an independent risk factor for chronic kidney disease (CKD). Maladaptive or incomplete repair of renal tubules after severe or episodic AKI leads to renal fibrosis and, eventually, CKD. Recent studies highlight a key role of mitochondrial pathology in AKI development and abnormal kidney repair after AKI. As such, timely elimination of damaged mitochondria in renal tubular cells represents an important quality control mechanism for cell homeostasis and survival during kidney injury and repair. Mitophagy is a selective form of autophagy that selectively removes redundant or damaged mitochondria. Here, we summarize our recent understanding on the molecular mechanisms of mitophagy, discuss the role of mitophagy in AKI development and kidney repair after AKI, and present future research directions and therapeutic potential.


2015 ◽  
Vol 40 (5) ◽  
pp. 520-532 ◽  
Author(s):  
Nayara Panizo ◽  
Alfonso Rubio-Navarro ◽  
Juan Manuel Amaro-Villalobos ◽  
Jesús Egido ◽  
Juan Antonio Moreno

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xiaojie Zhao ◽  
Dan Wang ◽  
Shanshan Wan ◽  
Xiuheng Liu ◽  
Wei Wang ◽  
...  

Background. Pin1, as the peptidyl-prolyl isomerase, plays a vital role in cellular processes. However, whether it has a regulatory effect on renal ischemia and reperfusion (I/R) injury still remains unknown. Methods. The hypoxia/reoxygenation (H/R) model in human kidney (HK-2) cells and the I/R model in rats were assessed to investigate the role of Pin1 on I/R-induced acute kidney injury. Male Sprague-Dawley rats were used to establish the I/R model for 15, 30, and 45 min ischemia and then 24 h reperfusion, with or without the Pin1 inhibitor, to demonstrate the role of Pin1 in acute kidney injury. HK-2 cells were cultured and experienced the H/R model to identify the molecular mechanisms involved. Results. In this study, we found that Pin1 and oxidative stress were obviously increased after renal I/R. Inhibition of Pin1 with juglone decreased renal structural and functional injuries, as well as oxidative stress. Besides, Pin1 inhibition with the inhibitor, juglone, or the small interfering RNA showed significant reduction on oxidative stress markers caused by the H/R process in vitro. Furthermore, the results indicated that the expression of p38 MAPK was increased during H/R in vitro and Pin1 inhibition could reduce the increased expression of p38 MAPK. Conclusion. Our results illustrated that Pin1 aggravated renal I/R injury via elevating oxidative stress through activation of the p38 MAPK pathway. These findings indicated that Pin1 might become the potential treatment for renal I/R injury.


2018 ◽  
Vol 315 (2) ◽  
pp. F291-F299 ◽  
Author(s):  
Xiaoyan Wen ◽  
Liyan Cui ◽  
Seth Morrisroe ◽  
Donald Maberry ◽  
David Emlet ◽  
...  

Sepsis-associated acute kidney injury (S-AKI) independently predicts mortality among critically ill patients. The role of innate immunity in this process is unclear, and there is an unmet need for S-AKI models to delineate the pathophysiological response. Mammals and zebrafish ( Danio rerio) share a conserved nephron structure and homologous innate immune systems, making the latter suitable for S-AKI research. We introduced Edwardsiella tarda to the zebrafish. Systemic E. tarda bacteremia resulted in sustained bacterial infection and dose-dependent mortality. A systemic immune reaction was characterized by increased mRNA expressions of il1b, tnfa, tgfb1a, and cxcl8-l1 ( P < 0.0001, P < 0.001, P < 0.001, and P < 0.01, respectively). Increase of host stress response genes ccnd1 and tp53 was observed at 24 h postinjection ( P < 0.0001 and P < 0.05, respectively). Moderate E. tarda infection induced zebrafish mortality of over 50% in larvae and 20% in adults, accompanied by pericardial edema in larvae and renal dysfunction in both larval and adult zebrafish. Expression of AKI markers insulin-like growth factor-binding protein-7 (IGFBP7), tissue inhibitor of metalloproteinases 2 (TIMP-2), and kidney injury molecule-1 (KIM-1) was found to be significantly increased in the septic animals at the transcription level ( P < 0.01, P < 0.05, and P < 0.05) and in nephric tubules compared with noninfected animals. In conclusion, we established a zebrafish model of S-AKI induced by E. tarda injection, with both larval and adult zebrafish showing nephron injury in the setting of infection.


2010 ◽  
Vol 43 (1) ◽  
pp. 237-240 ◽  
Author(s):  
Suhail Al-Salam ◽  
Ahmad Shaaban ◽  
Maha Alketbi ◽  
Naveed U. Haq ◽  
Samra Abouchacra

Sign in / Sign up

Export Citation Format

Share Document