Dietary (-)-epicatechin mitigates high fat-induced apoptosis, oxidative and endoplasmic reticulum stress in pancreatic β-cells both in vivo and in vitro

2021 ◽  
Vol 165 ◽  
pp. 44
Author(s):  
Eleonora Cremonini ◽  
Maëlys Rouget ◽  
Solenne Arredi ◽  
Charlotte Devulder-Mercier ◽  
Robin Cellier ◽  
...  
2017 ◽  
Vol 448 ◽  
pp. 108-121 ◽  
Author(s):  
Lukas A. Berchtold ◽  
Michela Miani ◽  
Thi A. Diep ◽  
Andreas N. Madsen ◽  
Valentina Cigliola ◽  
...  

2007 ◽  
Vol 193 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Shin Tsunekawa ◽  
Naoki Yamamoto ◽  
Katsura Tsukamoto ◽  
Yuji Itoh ◽  
Yukiko Kaneko ◽  
...  

The aim of this study was to investigate the in vivo and in vitro effects of exendin-4, a potent glucagon-like peptide 1 agonist, on the protection of the pancreatic β-cells against their cell death. In in vivo experiments, we used β-cell-specific calmodulin-overexpressing mice where massive apoptosis takes place in their β-cells, and we examined the effects of chronic treatment with exendin-4. Chronic and s.c. administration of exendin-4 reduced hyperglycemia. The treatment caused significant increases of the insulin contents of the pancreas and islets, and retained the insulin-positive area. Dispersed transgenic islet cells lived only shortly, and several endoplasmic reticulum (ER) stress-related molecules such as immunoglobulin-binding protein (Bip), inositol-requiring enzyme-1α, X-box-binding protein-1 (XBP-1), RNA-activated protein kinase-like endoplasmic reticulum kinase, activating transcription factor-4, and C/EBP-homologous protein (CHOP) were more expressed in the transgenic islets. We also found that the spliced form of XBP-1, a marker of ER stress, was also increased in β-cell-specific calmodulin-overexpressing transgenic islets. In the quantitative real-time PCR analyses, the expression levels of Bip and CHOP were reduced in the islets from the transgenic mice treated with exendin-4. These findings suggest that excess of ER stress occurs in the transgenic β-cells, and the suppression of ER stress and resultant protection against cell death may be involved in the anti-diabetic effects of exendin-4.


2012 ◽  
Vol 287 (27) ◽  
pp. 23236-23245 ◽  
Author(s):  
Yoshifumi Sato ◽  
Mitsutoki Hatta ◽  
Md. Fazlul Karim ◽  
Tomohiro Sawa ◽  
Fan-Yan Wei ◽  
...  

2020 ◽  
Vol 68 (45) ◽  
pp. 12617-12630
Author(s):  
Xin-Yi Wang ◽  
Bo-Rong Zhu ◽  
Qi Jia ◽  
Yi-Ming Li ◽  
Ting Wang ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Shengzhang Lin ◽  
Jianhong Zhang ◽  
Hui Chen ◽  
Kangjie Chen ◽  
Fuji Lai ◽  
...  

Capsaicin, main pungent ingredient of hot chilli peppers, has been shown to have anticarcinogenic effect on various cancer cells through multiple mechanisms. In this study, we investigated the apoptotic effect of capsaicin on human pancreatic cancer cells in bothin vitroandin vivosystems, as well as the possible mechanisms involved.In vitro, treatment of both the pancreatic cancer cells (PANC-1 and SW1990) with capsaicin resulted in cells growth inhibition, G0/G1 phase arrest, and apoptosis in a dose-dependent manner. Knockdown of growth arrest- and DNA damage-inducible gene 153 (GADD153), a marker of the endoplasmic-reticulum-stress- (ERS-) mediated apoptosis pathway, by specific siRNA attenuated capsaicin-induced apoptosis both in PANC-1 and SW1990 cells. Moreover,in vivostudies capsaicin effectively inhibited the growth and metabolism of pancreatic cancer and prolonged the survival time of pancreatic cancer xenograft tumor-induced mice. Furthermore, capsaicin increased the expression of some key ERS markers, including glucose-regulated protein 78 (GRP78), phosphoprotein kinase-like endoplasmic reticulum kinase (phosphoPERK), and phosphoeukaryotic initiation factor-2α(phospho-eIF2α), activating transcription factor 4 (ATF4) and GADD153 in tumor tissues. In conclusion, we for the first time provide important evidence to support the involvement of ERS in the induction of apoptosis in pancreatic cancer cells by capsaicin.


2019 ◽  
Vol 9 ◽  
Author(s):  
Rashmi Rajappa ◽  
Dornadula Sireesh ◽  
Magesh B. Salai ◽  
Kunka M. Ramkumar ◽  
Suryanarayanan Sarvajayakesavulu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document