Epigenetic silencing of GTP cyclohydrolase 1 promotes hepatocellular carcinoma growth by activating superoxide anion-mediated ASK1/p38 signaling via inhibiting tetrahydrobiopterin de novo biosynthesis

Author(s):  
Guo-Chao Zhong ◽  
Zhi-Bo Zhao ◽  
Yao Cheng ◽  
Yun-Bing Wang ◽  
Chan Qiu ◽  
...  
2014 ◽  
Vol 52 (08) ◽  
Author(s):  
T Tolstik ◽  
C Marquardt ◽  
C Matthäus ◽  
C Beleites ◽  
C Krafft ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 7236
Author(s):  
Endah Dwi Hartuti ◽  
Takaya Sakura ◽  
Mohammed S. O. Tagod ◽  
Eri Yoshida ◽  
Xinying Wang ◽  
...  

Plasmodium falciparum’s resistance to available antimalarial drugs highlights the need for the development of novel drugs. Pyrimidine de novo biosynthesis is a validated drug target for the prevention and treatment of malaria infection. P. falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the oxidation of dihydroorotate to orotate and utilize ubiquinone as an electron acceptor in the fourth step of pyrimidine de novo biosynthesis. PfDHODH is targeted by the inhibitor DSM265, which binds to a hydrophobic pocket located at the N-terminus where ubiquinone binds, which is known to be structurally divergent from the mammalian orthologue. In this study, we screened 40,400 compounds from the Kyoto University chemical library against recombinant PfDHODH. These studies led to the identification of 3,4-dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine and its derivatives as a new class of PfDHODH inhibitor. Moreover, the hit compounds identified in this study are selective for PfDHODH without inhibition of the human enzymes. Finally, this new scaffold of PfDHODH inhibitors showed growth inhibition activity against P. falciparum 3D7 with low toxicity to three human cell lines, providing a new starting point for antimalarial drug development.


2021 ◽  
Vol 22 (6) ◽  
pp. 3115
Author(s):  
Lorenzo Germelli ◽  
Eleonora Da Pozzo ◽  
Chiara Giacomelli ◽  
Chiara Tremolanti ◽  
Laura Marchetti ◽  
...  

Neuroactive steroids are potent modulators of microglial functions and are capable of counteracting their excessive reactivity. This action has mainly been ascribed to neuroactive steroids released from other sources, as microglia have been defined unable to produce neurosteroids de novo. Unexpectedly, immortalized murine microglia recently exhibited this de novo biosynthesis; herein, de novo neurosteroidogenesis was characterized in immortalized human microglia. The results demonstrated that C20 and HMC3 microglial cells constitutively express members of the neurosteroidogenesis multiprotein machinery—in particular, the transduceosome members StAR and TSPO, and the enzyme CYP11A1. Moreover, both cell lines produce pregnenolone and transcriptionally express the enzymes involved in neurosteroidogenesis. The high TSPO expression levels observed in microglia prompted us to assess its role in de novo neurosteroidogenesis. TSPO siRNA and TSPO synthetic ligand treatments were used to reduce and prompt TSPO function, respectively. The TSPO expression downregulation compromised the de novo neurosteroidogenesis and led to an increase in StAR expression, probably as a compensatory mechanism. The pharmacological TSPO stimulation the de novo neurosteroidogenesis improved in turn the neurosteroid-mediated release of Brain-Derived Neurotrophic Factor. In conclusion, these results demonstrated that de novo neurosteroidogenesis occurs in human microglia, unravelling a new mechanism potentially useful for future therapeutic purposes.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 124-125
Author(s):  
Raul Castro-Portuguez ◽  
Samuel Freitas ◽  
George Sutphin

Abstract Hepatocellular carcinoma (HCC) is the most prevalent cancer in the liver. The majority of ingested tryptophan is processed in the liver through the kynurenine pathway, the endpoint of which is de novo NAD+ biosynthesis. Dysregulation of tryptophan-kynurenine metabolism and NAD+ synthesis may promote mitochondrial malfunction, tumor reprogramming, and carcinogenesis. Using a publicly available gene expression dataset from liver hepatocellular carcinoma (LIHC) samples available through The Cancer Genome Atlas (TCGA; n = 371), we employed Principal Component Analysis (PCA), hierarchical clustering, gene-pattern expression profiling, and survival analysis to cluster patients and determine overall survival. Our analysis of genes encoding kynurenine pathway enzymes determined that patients with high QPRT expression had a poor prognosis with decreased median survival, with no effect on the maximum survival. There is a significant difference in the survival between patients with high QPRT expression relative to patients with high HAAO/AFMID expression (HR = 1.2, [95% CI 0.5-1.8] P = 0.0181, Gehan-Breslow-Wilcoxon Test). Patients with high QPRT expression have higher survival rates compared with low QPRT expression (HR = 1.4, [95% CI 0.9-2.2] P = 0.0344, Gehan-Breslow-Wilcoxon Test). To test the consequences of kynurenine-pathway inhibition in mitochondrial function and morphology we use 4-Cl-3HAA, an irreversible HAAO inhibitor, and observed a small increase in mitochondrial fragmentation in HepG2 cells after 24 hours of treatment. We conclude that kynurenine metabolism may be useful as a biomarker to predict patient prognosis among HCC patients. In ongoing work, we are testing QPRT inhibitors in cell culture as a potential adjuvant for chemotherapies.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1469
Author(s):  
Patricia M. Rusu ◽  
Andrea Y. Chan ◽  
Mathias Heikenwalder ◽  
Oliver J. Müller ◽  
Adam J. Rose

Prior studies have reported that dietary protein dilution (DPD) or amino acid dilution promotes heightened water intake (i.e., hyperdipsia) however, the exact dietary requirements and the mechanism responsible for this effect are still unknown. Here, we show that dietary amino acid (AA) restriction is sufficient and required to drive hyperdipsia during DPD. Our studies demonstrate that particularly dietary essential AA (EAA) restriction, but not non-EAA, is responsible for the hyperdipsic effect of total dietary AA restriction (DAR). Additionally, by using diets with varying amounts of individual EAA under constant total AA supply, we demonstrate that restriction of threonine (Thr) or tryptophan (Trp) is mandatory and sufficient for the effects of DAR on hyperdipsia and that liver-derived fibroblast growth factor 21 (FGF21) is required for this hyperdipsic effect. Strikingly, artificially introducing Thr de novo biosynthesis in hepatocytes reversed hyperdipsia during DAR. In summary, our results show that the DPD effects on hyperdipsia are induced by the deprivation of Thr and Trp, and in turn, via liver/hepatocyte-derived FGF21.


Author(s):  
Bastian Broschwitz ◽  
Lorena Prager ◽  
Tamara Pokorny ◽  
Joachim Ruther

Author(s):  
Weixian Li ◽  
Xiaohui Ma ◽  
Guodong Li ◽  
Aili Zhang ◽  
Dong Wang ◽  
...  
Keyword(s):  
De Novo ◽  

Sign in / Sign up

Export Citation Format

Share Document