scholarly journals Identification of 3,4-Dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine Derivatives as Novel Selective Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase

2021 ◽  
Vol 22 (13) ◽  
pp. 7236
Author(s):  
Endah Dwi Hartuti ◽  
Takaya Sakura ◽  
Mohammed S. O. Tagod ◽  
Eri Yoshida ◽  
Xinying Wang ◽  
...  

Plasmodium falciparum’s resistance to available antimalarial drugs highlights the need for the development of novel drugs. Pyrimidine de novo biosynthesis is a validated drug target for the prevention and treatment of malaria infection. P. falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the oxidation of dihydroorotate to orotate and utilize ubiquinone as an electron acceptor in the fourth step of pyrimidine de novo biosynthesis. PfDHODH is targeted by the inhibitor DSM265, which binds to a hydrophobic pocket located at the N-terminus where ubiquinone binds, which is known to be structurally divergent from the mammalian orthologue. In this study, we screened 40,400 compounds from the Kyoto University chemical library against recombinant PfDHODH. These studies led to the identification of 3,4-dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine and its derivatives as a new class of PfDHODH inhibitor. Moreover, the hit compounds identified in this study are selective for PfDHODH without inhibition of the human enzymes. Finally, this new scaffold of PfDHODH inhibitors showed growth inhibition activity against P. falciparum 3D7 with low toxicity to three human cell lines, providing a new starting point for antimalarial drug development.

Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1468
Author(s):  
Dan Sato ◽  
Endah Dwi Hartuti ◽  
Daniel Ken Inaoka ◽  
Takaya Sakura ◽  
Eri Amalia ◽  
...  

Dihydroorotate dehydrogenase (DHODH) is a mitochondrial monotopic membrane protein that plays an essential role in the pyrimidine de novo biosynthesis and electron transport chain pathways. In Eimeria tenella, an intracellular apicomplexan parasite that causes the most severe form of chicken coccidiosis, the activity of pyrimidine salvage pathway at the intracellular stage is negligible and it relies on the pyrimidine de novo biosynthesis pathway. Therefore, the enzymes of the de novo pathway are considered potential drug target candidates for the design of compounds with activity against this parasite. Although, DHODHs from E. tenella (EtDHODH), Plasmodium falciparum (PfDHODH), and human (HsDHODH) show distinct sensitivities to classical DHODH inhibitors, in this paper, we identify ferulenol as a potent inhibitor of both EtDHODH and HsDHODH. Additionally, we report the crystal structures of EtDHODH and HsDHODH in the absence and presence of ferulenol. Comparison of these enzymes showed that despite similar overall structures, the EtDHODH has a long insertion in the N-terminal helix region that assumes a disordered configuration. In addition, the crystal structures revealed that the ferulenol binding pocket of EtDHODH is larger than that of HsDHODH. These differences can be explored to accelerate structure-based design of inhibitors specifically targeting EtDHODH.


2016 ◽  
Vol 84 (10) ◽  
pp. 2974-2981 ◽  
Author(s):  
Miryam Andrea Hortua Triana ◽  
Daniela Cajiao Herrera ◽  
Barbara H. Zimmermann ◽  
Barbara A. Fox ◽  
David J. Bzik

Dihydroorotate dehydrogenase (DHODH) mediates the fourth step ofde novopyrimidine biosynthesis and is a proven drug target for inducing immunosuppression in therapy of human disease as well as a rapidly emerging drug target for treatment of malaria. InToxoplasma gondii, disruption of the first, fifth, or sixth step ofde novopyrimidine biosynthesis induced uracil auxotrophy. However, previous attempts to generate uracil auxotrophy by genetically deleting the mitochondrion-associated DHODH ofT. gondii(TgDHODH) failed. To further address the essentiality ofTgDHODH, mutant gene alleles deficient inTgDHODH activity were designed to ablate the enzyme activity. Replacement of the endogenousDHODHgene with catalytically deficientDHODHgene alleles induced uracil auxotrophy. Catalytically deficientTgDHODH localized to the mitochondria, and parasites retained mitochondrial membrane potential. These results show thatTgDHODH is essential for the synthesis of pyrimidines and suggest thatTgDHODH is required for a second essential function independent of its role in pyrimidine biosynthesis.


Oncotarget ◽  
2017 ◽  
Vol 8 (68) ◽  
pp. 112662-112674 ◽  
Author(s):  
Ninh B. Doan ◽  
Hisham Alhajala ◽  
Mona M. Al-Gizawiy ◽  
Wade M. Mueller ◽  
Scott D. Rand ◽  
...  

Reproduction ◽  
2002 ◽  
pp. 757-768 ◽  
Author(s):  
EA Carrey ◽  
C Dietz ◽  
DM Glubb ◽  
M Loffler ◽  
JM Lucocq ◽  
...  

Enzymes of the pathway for de novo biosynthesis of pyrimidine nucleotides have been reported in spermatozoa from fruitfly and mammals. The aim of the present study was to test the hypothesis that the enzymes for biosynthesis of uridine monophosphate (UMP) are concentrated near the mitochondria, which are segregated in the mid-piece of spermatozoa. Baby hamster kidney fibroblasts were compared with spermatozoa from rams, boars, bulls and men. Antibodies raised against synthetic peptides from sequences of the multienzyme polypeptides containing glutamine-dependent carbamyl phosphate synthetase, aspartate transcarbamylase and dihydroorotase (CAD) and UMP synthase, which catalyse reactions 1-3 and 5-6, respectively, were used, together with an affinity-purified antibody raised against dihydroorotate dehydrogenase (DHODH), the mitochondrial enzyme for step 4. Western blot analysis, immunofluorescent microscopy and immunoelectron microscopy confirmed that CAD and UMP synthase are found in the cytoplasm around and outside the mitochondria; DHODH is found exclusively inside the mitochondria. CAD was also located in the nucleus, where it has been reported in the nuclear matrix, and in the cytoplasm, apparently associated with the cytoskeleton. It is possible that CAD in the cytoplasm has a role unconnected with pyrimidine biosynthesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jasmin Hafner ◽  
James Payne ◽  
Homa MohammadiPeyhani ◽  
Vassily Hatzimanikatis ◽  
Christina Smolke

AbstractPlant natural products (PNPs) and their derivatives are important but underexplored sources of pharmaceutical molecules. To access this untapped potential, the reconstitution of heterologous PNP biosynthesis pathways in engineered microbes provides a valuable starting point to explore and produce novel PNP derivatives. Here, we introduce a computational workflow to systematically screen the biochemical vicinity of a biosynthetic pathway for pharmaceutical compounds that could be produced by derivatizing pathway intermediates. We apply our workflow to the biosynthetic pathway of noscapine, a benzylisoquinoline alkaloid (BIA) with a long history of medicinal use. Our workflow identifies pathways and enzyme candidates for the production of (S)-tetrahydropalmatine, a known analgesic and anxiolytic, and three additional derivatives. We then construct pathways for these compounds in yeast, resulting in platforms for de novo biosynthesis of BIA derivatives and demonstrating the value of cheminformatic tools to predict reactions, pathways, and enzymes in synthetic biology and metabolic engineering.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yue Zhou ◽  
Lei Tao ◽  
Xia Zhou ◽  
Zeping Zuo ◽  
Jin Gong ◽  
...  

AbstractHuman dihydroorotate dehydrogenase (DHODH) is a flavin-dependent mitochondrial enzyme catalyzing the fourth step in the de novo pyrimidine synthesis pathway. It is originally a target for the treatment of the non-neoplastic diseases involving in rheumatoid arthritis and multiple sclerosis, and is re-emerging as a validated therapeutic target for cancer therapy. In this review, we mainly unravel the biological function of DHODH in tumor progression, including its crucial role in de novo pyrimidine synthesis and mitochondrial respiratory chain in cancer cells. Moreover, various DHODH inhibitors developing in the past decades are also been displayed, and the specific mechanism between DHODH and its additional effects are illustrated. Collectively, we detailly discuss the association between DHODH and tumors in recent years here, and believe it will provide significant evidences and potential strategies for utilizing DHODH as a potential target in preclinical and clinical cancer therapies.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3800
Author(s):  
Elena Aguilera ◽  
Cintya Perdomo ◽  
Alejandra Espindola ◽  
Ileana Corvo ◽  
Paula Faral-Tello ◽  
...  

Chagas disease and Leishmaniasis are neglected endemic protozoan diseases recognized as public health problems by the World Health Organization. These diseases affect millions of people around the world however, efficient and low-cost treatments are not available. Different steroid molecules with antimicrobial and antiparasitic activity were isolated from diverse organisms (ticks, plants, fungi). These molecules have complex structures that make de novo synthesis extremely difficult. In this work, we designed new and simpler compounds with antiparasitic potential inspired in natural steroids and synthesized a series of nineteen steroidal arylideneketones and thiazolidenehydrazines. We explored their biological activity against Leishmania infantum, Leishmania amazonensis, and Trypanosoma cruzi in vitro and in vivo. We also assayed their genotoxicity and acute toxicity in vitro and in mice. The best compound, a steroidal thiosemicarbazone compound 8 (ID_1260) was active in vitro (IC50 200 nM) and in vivo (60% infection reduction at 50 mg/kg) in Leishmania and T. cruzi. It also has low toxicity in vitro and in vivo (LD50 >2000 mg/kg) and no genotoxic effects, being a promising compound for anti-trypanosomatid drug development.


1996 ◽  
Vol 7 (1) ◽  
pp. 7-13 ◽  
Author(s):  
M. Wachsman ◽  
F. M. Hamzeh ◽  
N. B. Assadi ◽  
P. S. Lietman

Evaluation of the elevation of host cell biosynthesis of deoxynucleoside triphosphates (dNTP's) induced by human cytomegalovirus (HCMV) infection as a target for antiviral therapeutics was carried out. The concentrations of all four intracellular dNTP's rose rapidly following HCMV infection, and were markedly above baseline by 8 h post infection (p.i.). All four deoxynucleoside triphosphates remained elevated above baseline for at least 72 h p.i. The effects of inhibitors of the de-novo pathway of pyrimidine biosynthesis on HCMV viral replication-were quantified by DNA dot blot. All pyrimidine biosynthesis inhibitors examined inhibited the HCMV DNA replication at concentrations that were non-toxic to the cell. These drugs were also more effective against HCMV, which is highly dependent on host denovo synthesis, than against HSV-1 which encodes enzymes capable of increasing the supply of dNTP's. The antiviral effect of brequinar, an inhibitor of one of the enzymes of the de-novo pathway (dihydroorotate dehydrogenase), was examined to determine if it coincided with a decrease in dNTP's. HCMV-infected fibroblasts and uninfected control cells were treated with a concentration of brequinar able to inhibit HCMV DNA levels 90%. It was found that brequinar markedly lowered the levels of dTTP found in treated cells compared to untreated cells in both HCMV-infected and uninfected cells.


2009 ◽  
Vol 420 (3) ◽  
pp. 451-462 ◽  
Author(s):  
Roderick A. M. Williams ◽  
Gareth D. Westrop ◽  
Graham H. Coombs

Genome mining and biochemical analyses have shown that Leishmania major possesses two pathways for cysteine synthesis – the de novo biosynthesis pathway comprising SAT (serine acetyltransferase) and CS (cysteine synthase) and the RTS (reverse trans-sulfuration) pathway comprising CBS (cystathionine β-synthase) and CGL (cystathionine γ-lyase). The LmjCS (L. major CS) is similar to the type A CSs of bacteria and catalyses the synthesis of cysteine using O-acetylserine and sulfide with Kms of 17.5 and 0.13 mM respectively. LmjCS can use sulfide provided by the action of MST (mercaptopyruvate sulfurtransferase) on 3-MP (3-mercaptopyruvate). LmjCS forms a bi-enzyme complex with Leishmania SAT (and Arabidopsis SAT), with residues Lys222, His226 and Lys227 of LmjCS being involved in the complex formation. LmjCBS (L. major CBS) catalyses the synthesis of cystathionine from homocysteine, but, unlike mammalian CBS, also has high cysteine synthase activity (but with the Km for sulfide being 10.7 mM). In contrast, LmjCS does not have CBS activity. CS was up-regulated when promastigotes were grown in medium with limited availability of sulfur amino acids. Exogenous methionine stimulated growth under these conditions and also the levels of intracellular cysteine, glutathione and trypanothione, whereas cysteine had no effect on growth or the intracellular cysteine levels, correlating with the low rate of transport of cysteine into the cell. These results suggest that cysteine is generated endogenously by promastigotes of Leishmania. The absence of CS from mammals and the clear differences between CBS of mammals and Leishmania suggest that each of the parasite enzymes could be a viable drug target.


Sign in / Sign up

Export Citation Format

Share Document