Oral immunization of carps with chitosan–alginate microcapsule containing probiotic expressing spring viremia of carp virus (SVCV) G protein provides effective protection against SVCV infection

2020 ◽  
Vol 105 ◽  
pp. 327-329
Author(s):  
Shuo Jia ◽  
Kun Zhou ◽  
Ronghui Pan ◽  
Jing Wei ◽  
Zhongmei Liu ◽  
...  
Author(s):  
Robert J. Carroll ◽  
Marvin P. Thompson ◽  
Harold M. Farrell

Milk is an unusually stable colloidal system; the stability of this system is due primarily to the formation of micelles by the major milk proteins, the caseins. Numerous models for the structure of casein micelles have been proposed; these models have been formulated on the basis of in vitro studies. Synthetic casein micelles (i.e., those formed by mixing the purified αsl- and k-caseins with Ca2+ in appropriate ratios) are dissimilar to those from freshly-drawn milks in (i) size distribution, (ii) ratio of Ca/P, and (iii) solvation (g. water/g. protein). Evidently, in vivo organization of the caseins into the micellar form occurs in-a manner which is not identical to the in vitro mode of formation.


Author(s):  
W. C. Bigelow ◽  
F. B. Drogosz ◽  
S. Nitschke

High vacuum systems with oil diffusion pumps usually have a pressure switch to protect against Insufficient cooling water; however, If left unattended for long periods of time, failure of the mechanical fore pump can occur with equally serious results. The device shown schematically in Fig. 1 has been found to give effective protection against both these failures, yet it is inexpensive and relatively simple to build and operate.With this system, pressure in the fore pump line is measured by thermocouple vacuum gage TVG (CVC G.TC-004) whose output is monitored by meter relay MRy (Weston 1092 Sensitrol) which is set to close if the pressure rises above about 0.2 torr. This energizes control relay CRy (Potter & Brumfield KA5Y 120VAC SPDT) cutting off power to solenoid-operated fore line valve Vf (Cenco 94280-4 Norm. Closed) which closes to prevent further leakage of air into the diffusion pump


2020 ◽  
Vol 134 (5) ◽  
pp. 473-512 ◽  
Author(s):  
Ryan P. Ceddia ◽  
Sheila Collins

Abstract With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand–receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein–coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.


Sign in / Sign up

Export Citation Format

Share Document