Effect of air flowrate on pollutant dispersion pattern of coal dust particles at fully mechanized mining face based on numerical simulation

Fuel ◽  
2019 ◽  
Vol 239 ◽  
pp. 623-635 ◽  
Author(s):  
Peng Cai ◽  
Wen Nie ◽  
Dawei Chen ◽  
Shibo Yang ◽  
Zhiqiang Liu
2020 ◽  
Vol 45 (11) ◽  
pp. 9815-9833
Author(s):  
Guodong Zhai ◽  
Wentao Zhang ◽  
Yaozong Li ◽  
Xinghao Lu ◽  
Wenyuan Hu

AbstractIn order to effectively reduce the coal dust concentration in a fully mechanized mining face, this research used laboratory experiment, numerical simulation, and field test to conduct an in-depth exploration of the ejector precipitator installed at the low-level caving coal hydraulic support. Firstly, through the experimental platform in the laboratory, the dust removal effect of the nozzle with different structural parameters was tested, and the 3D particle dynamic analyzer was adopted to verify its atomization characteristics; then, the structural parameters corresponding to the nozzle in the best test results were obtained. Secondly, by using Fluent, the negative pressure flow field in the ejector barrel was numerically simulated. The results indicated that when the pressure of supply water was 12 MPa, the negative pressure value formed in the flow field was the lowest and the inspiratory velocity was the largest, which was conducive to dust removal. Finally, the tests of liquid–gas ratio and dust removal ratio were carried out in a fully mechanized mining face. The results showed that when the nozzle specification recommended by the experiment and the pressure of supply water recommended by the numerical simulation were used, the removal ratios of the total coal dust and the respirable coal dust were 89.5% and 91.0%, respectively, at the measuring point of the highest coal dust concentration. It indicates that the ejector precipitator has a good application effect in reducing the coal dust concentration in a fully mechanized mining face and improving the work environment of coal mine workers.


2013 ◽  
Vol 313-314 ◽  
pp. 702-705
Author(s):  
Shao Cheng Ge ◽  
Yao Xuan Feng ◽  
De Ji Jing

For getting the effectiveof application in dissipation dust law with particle motion equation atcoal handling system of belt machine tail, must be to proceed related numerical simulation in the way of dust particles motion incoal handling system of belt machine tail and dust concentration of diffusion inoperation space. Application particlemotion equation theory for numerical simulation to coal dustparticles, obtained dust coal dissipation law in coal handling system, at thesame time combine with the data of the field test of dust concentration andfallout dispersion for analyzing and comparing. The results of comparison showthat: the data of numerical simulation with particle motion equationin coal dust dissipation law is coincide with reality dissipation law. Accordingto the conclusion of this research, it is provides theoretical basis forprevention and treatment in coal mine of coal handling system of dustdissipation.


Author(s):  
Gustavo Naozuka ◽  
Neyva Romeiro ◽  
Eliandro Cirilo ◽  
Paulo Laerte NATTI ◽  
Letícia Mayumi Doy Okamoto

2020 ◽  
Vol 1683 ◽  
pp. 022075
Author(s):  
N G Ivanov ◽  
A D Podmarkova ◽  
M A Zasimova ◽  
D Markov

2021 ◽  
Vol 132 ◽  
pp. 103506
Author(s):  
Zheng Wang ◽  
Xu Zheng ◽  
Dongyan Li ◽  
Helin Zhang ◽  
Yi Yang ◽  
...  
Keyword(s):  

Author(s):  
K.M. Moiseeva ◽  
◽  
A.Yu. Krainov ◽  
E.I. Rozhkova ◽  
◽  
...  

Swirling combustion is currently one of the most important engineering problems in physics of combustion. There is a hypothesis on the increase in the combustion efficiency of reacting gas mixtures in combustion chambers with swirling flows, as well as on the increase in the efficiency of fuel combustion devices. In this paper, it is proposed to simulate a swirling flow by taking into account the angular component of the flow velocity. The aim of the study is to determine the effect of the angular component of the flow velocity on the characteristics of the flow and combustion of an air suspension of coal dust in a pipe. The problem is solved in a twodimensional axisymmetric approximation with allowance for a swirling flow. A physical and mathematical model is based on the approaches of the mechanics of multiphase reacting media. A solution method involves the arbitrary discontinuity decay algorithm. The impact of the flow swirl and the size of coal dust particles on the gas temperature distribution along the pipe is determined.


2021 ◽  
Vol 893 (1) ◽  
pp. 012044
Author(s):  
H Salsabila ◽  
A Turyanti ◽  
DE Nuryanto

Abstract Bandung is one of big cities in Indonesia with high activities on industrial and transportation that will increase the air pollutant emission and causes adversely affect the public health. Based on that matter, monitoring of air pollutant concentration is urgently needed to predict the direction of pollutant dispersion and to analyze which locations are vulnerable to maximum exposure of the pollutant. Field monitoring of air pollutant concentration needs much time and high cost, but modeling could help for this. One of the models that can be used to predict the direction of pollutant distribution is the Weather Research Forecasting/Chemistry (WRF-Chem) model, which is a model that combines meteorological models with air quality models. The output of the WRF-Chem running model on July and October 2018, which has been analyzed visually, showed the dispersion pattern of PM10 and PM2.5 is spread mostly to the west, northwest, and north following the wind direction. According to the output of the WRF-Chem model, Bandung Kulon is the most polluted subdistrict by PM10 and PM2.5 with an exposure frequency of 22 hours (PM10), 24 hours (PM2.5) on July 2018 and 19 Hours (PM10), 14 hours (PM2.5) on October 2018. The correlation value for meteorological parameters is quite high in July 2018 (R = 0.9 for wind speed and R = 0.82 for air temperature). So based on the meteorological factor, WRF-Chem model can be used to predict the direction of pollutant distribution.


Sign in / Sign up

Export Citation Format

Share Document