scholarly journals Thermodynamics analysis and performance optimization of a reheat – Regenerative steam turbine power plant with feed water heaters

Fuel ◽  
2020 ◽  
Vol 280 ◽  
pp. 118577 ◽  
Author(s):  
S.O. Oyedepo ◽  
B.A. Fakeye ◽  
B. Mabinuori ◽  
P.O. Babalola ◽  
R.O. Leramo ◽  
...  
Data in Brief ◽  
2020 ◽  
Vol 32 ◽  
pp. 106086
Author(s):  
S.O. Oyedepo ◽  
O. Kilanko ◽  
M.A. Waheed ◽  
O.S.I. Fayomi ◽  
O.S. Ohunakin ◽  
...  

Author(s):  
H. A. Bazzini

Much of the steam-turbine based, power generating units all over the word are more than 30 years old now. Within a few years they will face the possibility of retirement from service and replacement. Nonetheless some of them are firm candidates for repowering, a technology able to improve plant efficiency, output and reliability at low costs. This paper summarizes a study performed to establish the feasibility to repower a 2 × 33 MW steam turbine power plant and the procedure followed until selection of the steam cycle more suitable to the project. The preferred solution is compared with direct replacement of the units by a new combined cycle. Various repowering options were reviewed to find “beat recovery” type repowering as the best solution. That well-known technology consists of replacing the steam generator by a gas turbine coupled to an HRSG, supplying steam to the existing steam turbine. Three “GT+HRSG+ST” arrangements were considered. Available gas turbine-generators — both industrial and aero-derivative type —, were surveyed for three power output ranges. Five “typical” gas turbine-generator classes were then selected. Steam flow raised at the HRSG, gross and net power generation, and heat exchanging surface area of the HRSG, were calculated for a broad range of usually applied, steam turbine throttle conditions. Both single pressure and double pressure steam cycles were considered, as well as supplemental fire and convenience of utilizing the existing feed water heaters. Balance of plant constraints were also reviewed. Estimates were developed for total investment, O&M costs, fuel expenses, and revenues. Results are shown through various graphics and tables. The route leading to the preferred solution is explained and a sensitivity analysis added to validate the selection. The preferred solution, consisting in a Class 130 gas turbine in arrangement 1–1–2, a dual-pressure HRSG and a steam cycle without feed-water heaters, win allow delivering 200 MW to the grid, with a heat rate of 7423 kJ/kW-hr. Investment was valued at $MM77.0, with an IRR of 15.3%. Those figures compare well with the option of installing a new GTCC unit: with a better heat rate but an investment valued at $MM97.5, its IRR will only be 12.4%.


Alloy Digest ◽  
1969 ◽  
Vol 18 (6) ◽  

Abstract Cupro Nickel, 30%-716 is a high strength copper-nickel-iron alloy for heat exchanger tubes in power plant feed water heaters, and also for oil refinery service. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, joining, and surface treatment. Filing Code: Cu-200. Producer or source: Anaconda American Brass Company.


Author(s):  
S. Samanta ◽  
S. Ghosh

This paper presents a theoretical study of partial repowering scheme for an existing 210MW coal fired power plant and reports predicted performance improvement obtainable from the repowering by using Cycle Tempo software. In this method old boiler is used as it is, only modifying its air heater and forced flow sections. Out of four operating coal mills, one mill is considered to be taken out. A new natural gas fired gas turbine (GT) block is considered to be integrated with the existing plant whose exhaust is fed to the existing boiler. The GT size is selected such that its exhaust provide heat input equivalent to the replaced coal mill. The burners associated with that coal mill are assumed to be modified to handle hot exhaust gas from the GT block. It is noticed that a substantial amount of energy is available in the flue gas, coming out from the boiler, after the air preheater which can partially meet the heat loads of feed water heaters. This helps in saving of intermediate pressure (IP) and low pressure (LP) bleed steam and consequent increase in the output of the steam cycle. The partial repowering results in nearly 40% increase in capacity of the plant (from 210MW to 284MW). It also results in substantial increase in overall efficiency of the repowered plant by 28%, and consequent decrease in plant heat rate by 22%. The specific CO2 emission of the plant decreases about 31% after repowering.


Author(s):  
R. Chacartegui ◽  
D. Sa´nchez ◽  
J. A. Becerra ◽  
A. Mun˜oz ◽  
T. Sa´nchez

In this work, a tool to predict the performance of fossil fuel steam power plants under variable operating conditions or under maintenance operations has been developed. This tool is based on the Spencer-Cotton-Cannon method for large steam turbine generator units. The tool has been validated by comparing the predicted results at different loads with real operating data of a 565 MW steam power plant, located in Southern Spain. The results obtained from the model show a good agreement with most of the power plant parameters. The simulation tool has been then used to predict the performance of a steam power plant in different operating conditions such as variable terminal temperature difference or drain cooler approach of the feed-water heaters, or under maintenance conditions like a feed-water heater out of service.


Author(s):  
Katarzyna Stępczyńska ◽  
Henryk Łukowicz ◽  
Sławomir Dykas ◽  
Sebastian Rulik

Coal-based electric power generation remains the basic source of obtaining energy. With increasing pressure to reduce CO2 emissions, improving power unit efficiency has become an issue of utmost significance. The development of technologies related to coal-fired power units does not focus solely on the steam parameters ahead of the turbine. Increasing the live steam parameters usually constitutes the greatest contribution to the rise in the efficiency of a power unit, but the sum of efficiency gains related to the application of other solutions can also be significant and can, in some cases, exceed the effects related to raising the temperature and steam pressure values. A paper presents thermodynamic and economic analysis of various configurations of the ultra-supercritical coal-fired 900 MW power unit with the auxiliary steam turbine. Main subject of research was a power unit considered within the Strategic Research Programme – Advanced Technologies for Energy Generation with the parameters of live and reheat steam: 30 MPa/650°C/670°C. The base configuration of the power unit has single steam reheat and electric drive boiler feed pump. Analysis of ultra-supercritical 900 MW power unit involves configuration with a single and double reheat. The following configurations of the auxiliary steam turbine will be presented and compared: • extraction-backpressure steam turbine fed with steam from cold reheat line with bleed and steam outlet directed to the feed water heaters; • extraction-backpressure steam turbine fed with steam from cold reheat line with bleed and steam outlet directed to the feed water heaters; the auxiliary turbine drives the boiler feed pump; • backpressure turbine fed with steam from a hot reheat steam line operating in parallel with the intermediate-pressure turbine; the auxiliary turbine drives the boiler feed pump. The analysis of the operation of the 900 MW unit was carried out for three load levels: for the nominal mass flow of live steam, and for the partial mass flow of 75% and 50%. For all presented solutions thermodynamic and economic analysis was performed, which has taken into account the charge for CO2 emissions.


Sign in / Sign up

Export Citation Format

Share Document