Study on the thermophysical properties of waste cooking oil biodiesel fuel blends with 1-butanol

Fuel ◽  
2021 ◽  
Vol 287 ◽  
pp. 119540
Author(s):  
Rachid Ait Belale ◽  
Fatima Ezzahrae M'hamdi Alaoui ◽  
Younes Chhiti ◽  
Abdelaziz Sahibeddine ◽  
Natalia Munoz Rujas ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5708
Author(s):  
Mohamed Mohamed ◽  
Chee-Keong Tan ◽  
Ali Fouda ◽  
Mohammed Saber Gad ◽  
Osayed Abu-Elyazeed ◽  
...  

This paper first describes a slow catalytic pyrolysis process used for synthesizing biodiesel from waste cooking oil (WCO) as a feedstock. The influence of variations in the catalyst type (sodium hydroxide and potassium hydroxide), and catalyst concentration (0.5, 1.0, 3.0, 5.0, 7.0 and 10.0% by weight) on both the pyrolysis temperature range and biodiesel yield were investigated. The results suggested that sodium hydroxide (NaOH) was more effective than potassium hydroxide (KOH) as catalysts and that the highest yield (around 70 wt.%) was observed for a NaOH concentration of about 1 wt.% The resultant pyrolysis temperature range was also significantly lower for NaOH catalyst, thus suggesting overall lower energy consumption. Compared to conventional diesel, the synthesized biodiesel exhibited relatively similar physical properties and calorific value. The biodiesel was subsequently blended with diesel fuel in different blend ratios of 0, 20, 40, 60, 80 and 100% by volume of biodiesel and were later tested in a compression ignition engine. Brake thermal efficiency and specific fuel consumption were observed to be worse with biodiesel fuel blends particularly at higher engine load above 50%. However, NOx emission generally decreased with increasing blend ratio across all engine load, with greater reduction observed at higher engine load. Similar observation can also be concluded for CO emission. In contrast, lower hydrocarbon (HC) emission from the biodiesel fuel blends was only observed for blend ratios no higher than 40%. Particulate emission from the biodiesel fuel blends did not pose an issue given its comparable smoke opacity to diesel observed during the engine test. The in-cylinder peak pressures, temperature and heat release rate of biodiesel fuel blends were lower than diesel. Overall, biodiesel fuel blends exhibited shorter ignition delays when compared to diesel fuel.


2008 ◽  
Vol 4 (4) ◽  
pp. 318-323 ◽  
Author(s):  
Hirotsugu KAMAHARA ◽  
Shun YAMAGUCHI ◽  
Ryuichi TACHIBANA ◽  
Naohiro GOTO ◽  
Koichi FUJIE

2014 ◽  
Vol 660 ◽  
pp. 386-390 ◽  
Author(s):  
Norazwan Azman ◽  
Mirnah Suardi ◽  
Amir Khalid

The use of fossil fuels as energy sources has grown to significantly be likely to have a major environmental impact. Reduction of world oil reserves and increasing environmental concerns have prompted alternative is found and renewable source of energy called biodiesel. Biodiesel fuel from vegetable oil is considered as the best candidates for diesel fuel replacement in diesel engines because of its closer. Fuel prices are going up day by day in the world. Thus, the means and methods have been trying for years to get fuel alternative outcomes. This study investigated the effects of different storage periods used in quality biodiesel blends (B5, B10, B15) of waste cooking oil and diesel fuel under low temperature and the temperature of the environment. Biodiesel samples were stored in glass containers under indoor conditions, and outdoor conditions for 10 weeks in total. These samples were monitored on a weekly basis through the test properties. The experimental density, viscosity, acid value, water content and flash point discussed in detail. Biodiesel storage at low temperatures is suitable and more advantageous because the impact on the physical properties is minimal and beneficial to slow down the degradation of biodiesel and storage.


Author(s):  
H. Sharon ◽  
Joel Jackson R. ◽  
Prabha C.

Feed stock cost and NOX emission are the major barriers for commercialization of biodiesel. Waste cooking oil is well identified as one of the cheapest feed stocks for biodiesel production. This chapter reduces NOX emission of waste cooking oil biodiesel. Test fuel blends are prepared by mixing diesel (20 to 50 v/v%), butanol (5 v/v%), and waste cooking oil biodiesel (45 to 75 v/v%). Fuel properties of waste cooking oil biodiesel are enhanced due to addition of diesel and butanol. Brake specific energy consumption of the blends is higher than diesel fuel. Harmful emissions like carbon monoxide, nitrous oxide, and smoke opacity are lower for blends than diesel fuel. Increasing biodiesel concentration in blend also reduces hydrocarbon emission to a significant extent. The obtained results justify the suitability of proposed cheap blends for diesel engine emission reduction.


2013 ◽  
Vol 146 ◽  
pp. 785-788 ◽  
Author(s):  
Changjun Zou ◽  
Pinwen Zhao ◽  
Lihong Shi ◽  
Shaobing Huang ◽  
Pingya Luo

Sign in / Sign up

Export Citation Format

Share Document