The Effects of Storage Duration on Biodiesel Derived from Waste Cooking Oil

2014 ◽  
Vol 660 ◽  
pp. 386-390 ◽  
Author(s):  
Norazwan Azman ◽  
Mirnah Suardi ◽  
Amir Khalid

The use of fossil fuels as energy sources has grown to significantly be likely to have a major environmental impact. Reduction of world oil reserves and increasing environmental concerns have prompted alternative is found and renewable source of energy called biodiesel. Biodiesel fuel from vegetable oil is considered as the best candidates for diesel fuel replacement in diesel engines because of its closer. Fuel prices are going up day by day in the world. Thus, the means and methods have been trying for years to get fuel alternative outcomes. This study investigated the effects of different storage periods used in quality biodiesel blends (B5, B10, B15) of waste cooking oil and diesel fuel under low temperature and the temperature of the environment. Biodiesel samples were stored in glass containers under indoor conditions, and outdoor conditions for 10 weeks in total. These samples were monitored on a weekly basis through the test properties. The experimental density, viscosity, acid value, water content and flash point discussed in detail. Biodiesel storage at low temperatures is suitable and more advantageous because the impact on the physical properties is minimal and beneficial to slow down the degradation of biodiesel and storage.

2014 ◽  
Vol 554 ◽  
pp. 494-499 ◽  
Author(s):  
Amir Khalid ◽  
Norazwan Azman ◽  
Hanis Zakaria ◽  
Bukhari Manshoor ◽  
Izzuddin Zaman ◽  
...  

The reduction of world oil reserves fossil fuels and increasing environmental concerns significantly influences the popularity of biodiesel as an alternative diesel. This research investigates the effects of storage duration of variant blending waste cooking oil ratio under different storage temperature on fuel properties. The biodiesel samples were stored at different temperatures and were monitored at regular interval over a period of 70 days. Blending of biodiesel was varied from 5vol % (WCO5) ~15vol% (WCO15) and storage temperature from 24°C~35°C. These samples were monitored on a weekly and the effects of storage conditions on properties of biodiesel such as density, kinematics viscosity, acid value, water content and flash point of biodiesel were discussed in detail. The observation of biodiesel shows that the increasing of storage duration of biodiesel derived from waste cocking oil influences to the increasing of density, kinematics viscosity, acid value and water content.


2020 ◽  
Vol 82 (4) ◽  
Author(s):  
Nik Nur Fatin Amiera Nik Aziz ◽  
Mazlan Said ◽  
Muhammad Syahiran Abdul Malik ◽  
Mohammad Nazri Mohd. Jaafar ◽  
Norazila Othman ◽  
...  

Depletion of fossil fuels, concerns on environment, and fuel price fluctuation have become the major drives in searching for sustainable alternative fuel. In that regard, a study was conducted to evaluate the combustion performance of Waste Cooking Oil (WCO) converted into biodiesel and blended with Conventional Diesel Fuel (CDF) as a mean of sustainable replacement for diesel fuel. In this study, the production of biodiesel fuel from waste cooking oil was done via transesterification process, using the single step approach. The properties of the WCO biodiesel was characterized. The combustion performance of the produced fuels has been studied for B10 and B30 biodiesel from WCO and CDF (as baseline) based on their wall temperature profiles and gaseous emissions generated such as nitrogen oxides (NOx), carbon monoxide (CO) and sulphur dioxide (SO2). It was found that the B30 WCO biodiesel emits lower emission compared to CDF but at the same time generates a lower temperature profile.


2014 ◽  
Vol 3 (10) ◽  
pp. 3419
Author(s):  
Mohan Reddy Nalabolu* ◽  
Varaprasad Bobbarala ◽  
Mahesh Kandula

At the present moment worldwide waning fossil fuel resources as well as the tendency for developing new renewable biofuels have shifted the interest of the society towards finding novel alternative fuel sources. Biofuels have been put forward as one of a range of alternatives with lower emissions and a higher degree of fuel security and gives potential opportunities for rural and regional communities. Biodiesel has a great potential as an alternative diesel fuel. In this work, biodiesel was prepared from waste cooking oil it was converted into biodiesel through single step transesterification. Methanol with Potassium hydroxide as a catalyst was used for the transesterification process. The biodiesel was characterized by its fuel properties including acid value, cloud and pour points, water content, sediments, oxidation stability, carbon residue, flash point, kinematic viscosity, density according to IS: 15607-05 standards. The viscosity of the waste cooking oil biodiesel was found to be 4.05 mm2/sec at 400C. Flash point was found to be 1280C, water and sediment was 236mg/kg, 0 % respectively, carbon residue was 0.017%, total acid value was 0.2 mgKOH/g, cloud point was 40C and pour point was 120C. The results showed that one step transesterification was better and resulted in higher yield and better fuel properties. The research demonstrated that biodiesel obtained under optimum conditions from waste cooking oil was of good quality and could be used as a diesel fuel.


Author(s):  
Ramanathan Velmurugan ◽  
Jaikumar Mayakrishnan ◽  
S. Induja ◽  
Selvakumar Raja ◽  
Sasikumar Nandagopal ◽  
...  

Vegetable oil is considered as one among the promising alternatives for diesel fuel as it holds properties very close to diesel fuel. However, straight usage of vegetable oil in compression ignition (CI) engine resulted in inferior performance and emission behavior. This can be improved by modifying the straight vegetable oil into its esters, emulsion, and using them as a fuel in CI engine showcased an improved engine behavior. Waste cooking oil (WCO) is one such kind of vegetable oil gained a lot of attraction globally as it is generated in a large quantity locally. The present investigation aims at analyzing various parameters of single cylinder four stroke CI engine fueled with waste cooking oil biodiesel (WCOB), waste cooking oil biodiesel water emulsion (WCOBE) while the engine is operated with a constant speed of 1500 rpm. Furthermore, an attempt is made to study the impact of nanofluids in the behavior of the engine fueled with WCOB blended with nanofluids (WCOBN50). This work also explored a novel method of producing nanofluids using one-step chemical synthesis method. Copper oxide (CuO) nanofluids were prepared by the above mentioned method and blended with waste cooking oil biodiesel (WCOBN50) using ethylene glycol as a suitable emulsifier. Results revealed that brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) of WCOBN50 are significantly improved when compared to WCOB and WCOBE. Furthermore, a higher reduction in oxides of nitrogen (NOx), carbon monoxide (CO), hydrocarbon (HC), and smoke emissions were observed with WCOBN50 on comparison with all other tested fuels at different power outputs. It is also identified that one-step chemical synthesis method is a promising technique for preparing nanofluids with a high range of stability.


2017 ◽  
Vol 13 (3) ◽  
pp. 235
Author(s):  
Ribwar K. Abdulrahman

In recent decade, the demand for fuel as a source of energy has been dramatic. In fact, many oil and gas reservoirs are declining around the world. The use of fossil fuels such as oil, coal, and natural gas is contributing to the phenomenon of global warming. This is because it emits high quantities of carbon dioxide and other greenhouse gases to the atmosphere. Thus, many researchers and energy companies are investigating the production of an environmental friendly fuel that reduces the emission of greenhouse gases. Thus, bio fuel is one of the most obvious alternative sustainable fuels that can be produced from used vegetable oil and animal fats as well. Indeed, it has several advantages. For example, a biodegradable and a renewable energy reduces global warming phenomenon. Thus, this work is an attempt to produce a biodiesel fuel from chicken fat and waste cooking oil. Also, it was found that it is possible to produce biodiesel from chicken fat and waste cooking oils using transesterification reaction method. Furthermore, the process optimization was also adopted; for example, methanol to oil ratio. It has been found that the yield percentages of the produced biodiesel is increased by increasing the amount of methanol. In addition, the maximum conversion to ester could be achieved at methanol: oil ratio about 7:1. at 60 °C.


2015 ◽  
Vol 773-774 ◽  
pp. 425-429 ◽  
Author(s):  
Nur Atiqah Ramlan ◽  
Abdul Adam Abdullah ◽  
Mohd Herzwan Hamzah ◽  
Nur Fauziah Jaharudin ◽  
Rizalman Mamat

The depletion of fossil fuels as well as the rises of greenhouse gases had caused most government worldwide to follow the international energy policies for the use of biodiesel. One of the economical sources for biodiesel production is waste cooking oil. The use of waste cooking oil is more sustainable if they can perform similarly to conventional diesel fuel. This paper deals with the experimental study carried out to evaluate the engine performance and exhaust emission of diesel engine operated by biodiesel from waste cooking oil at various engine speed. The biodiesel used are known as B5, which contains of 5% of waste cooking oil and 95% of diesel fuel. The other one is B20, which contains of 20% of waste cooking oil plus 80% of diesel. Diesel was used as a comparison purposes. The results show that power and torque for B5 give the closest trend to diesel. In terms of heat release, diesel still dominates the highest value compared to B5 and B20. For exhaust emission, B5 and B20 showed improvement in the reduction of NOx and PM.


2018 ◽  
Vol 29 (5) ◽  
pp. 732-741 ◽  
Author(s):  
Farah Halek ◽  
Ali Kavousi-Rahim

Biodiesel is a renewable energy resource consisting of the alkyl monoesters of fatty acids obtained from vegetable oils, waste cooking oils, or animal fats. Biodiesel has been noticed recently as an alternative to fossil fuels. Previous studies have shown that biodiesel produces less pollutants compared to diesel fuel. Biodiesel fuel increases the emission of NOx exceptionally. Recently, it has been found that antioxidant addition to biodiesel is a solution to solve the problem. The purpose of this research is to study the effect of antioxidants addition on the emissions of CO, HC, and NOx from biodiesel fuel. Exhaust emissions of an agriculture diesel engine were studied using biodiesel blend with a 500 ppm propyl gallate (PrG) (propyl-3,4,5-trihydroxybenzoate) and butylated hydroxy anisole (BhA) (2-tert-butyl-4-methoxyphenol) as two major antioxidants. Biodiesel used in this research was prepared through NaOH catalyzed transesterification of a waste cooking oil that originally was taken from sunflower oil, with the assistance of ultrasonic homogenizer. After biodiesel production, five blends including neat diesel, B10, B20, B20 + 500 ppm PrG, and B20+ 500 ppm BhA were used as fuel and the emitted gases were analyzed. The results of this work demonstrated that the addition of antioxidants has no significant effect on lowering CO emission, as well as lowering HC; but the addition of antioxidants results in more efficient reduction of NOx emission from diesel exhaust. In general, BhA showed better results compared to PrG.


2016 ◽  
Vol 11 (1) ◽  
pp. 260-266
Author(s):  
Ajinkya Deshpande ◽  
Pratiksinh Chavda ◽  
Heena Kadeval

Biodiesel is biodegradable, clean-burning, non-toxic, renewable, high-quality, and cheap diesel fuel made primarily from waste vegetable oil which can be used without any alterations in engine design. The paper is concerned with the extraction and quality evaluation of the biodiesel fuels synthesized from waste soya bean cooking oil. Waste soya bean cooking oil had high amount of free fatty acid. Thus, single step transesterification process with the aid of homogeneous catalyst as 1% potassium hydroxide were implemented in this experiment. Methanol was chosen as alcohol solvent. In the transesterification process, the triglycerides in waste cooking oil was reacted with a methanol to form esters and glycerol as by product.The biodiesel were extracted for different oil to methanol ratio as 1:2, 1:3 and 1:4. The highest biodiesel yield of 76% was obtained at 1:3 volumetric ratio for 60 ºC reaction temperature and 1250 rpm stirring speed. Results show that the optimal methyl ester yield of 90% occurred at methanol: oil volume ratio of 3:1. The product met the ASTM fuel standards for relative density, acid value, relative density, calorific value, flash point and kinematic viscosity.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5708
Author(s):  
Mohamed Mohamed ◽  
Chee-Keong Tan ◽  
Ali Fouda ◽  
Mohammed Saber Gad ◽  
Osayed Abu-Elyazeed ◽  
...  

This paper first describes a slow catalytic pyrolysis process used for synthesizing biodiesel from waste cooking oil (WCO) as a feedstock. The influence of variations in the catalyst type (sodium hydroxide and potassium hydroxide), and catalyst concentration (0.5, 1.0, 3.0, 5.0, 7.0 and 10.0% by weight) on both the pyrolysis temperature range and biodiesel yield were investigated. The results suggested that sodium hydroxide (NaOH) was more effective than potassium hydroxide (KOH) as catalysts and that the highest yield (around 70 wt.%) was observed for a NaOH concentration of about 1 wt.% The resultant pyrolysis temperature range was also significantly lower for NaOH catalyst, thus suggesting overall lower energy consumption. Compared to conventional diesel, the synthesized biodiesel exhibited relatively similar physical properties and calorific value. The biodiesel was subsequently blended with diesel fuel in different blend ratios of 0, 20, 40, 60, 80 and 100% by volume of biodiesel and were later tested in a compression ignition engine. Brake thermal efficiency and specific fuel consumption were observed to be worse with biodiesel fuel blends particularly at higher engine load above 50%. However, NOx emission generally decreased with increasing blend ratio across all engine load, with greater reduction observed at higher engine load. Similar observation can also be concluded for CO emission. In contrast, lower hydrocarbon (HC) emission from the biodiesel fuel blends was only observed for blend ratios no higher than 40%. Particulate emission from the biodiesel fuel blends did not pose an issue given its comparable smoke opacity to diesel observed during the engine test. The in-cylinder peak pressures, temperature and heat release rate of biodiesel fuel blends were lower than diesel. Overall, biodiesel fuel blends exhibited shorter ignition delays when compared to diesel fuel.


2012 ◽  
Vol 550-553 ◽  
pp. 687-692
Author(s):  
Guang Rui Liu ◽  
Guan Yi Chen

Biodiesel, as an alternative auto fuel for conventional fossil fuel, has drawn wide attention in recent years. In this research, a two-step process for biodiesel production using waste cooking oil as feedstock was studied in a pilot plant with a treatment capacity of 3 ton/d. The results show that: the process exihibited a good conversion ratio and the biodiesel displayed suitable physical-chemical properties in comparison with diesel fuel, such as flash point of 137°C, viscosity of 4.49 mm2/s, acid value of 0.44 mg KOH/g etc. The quality of biodiesel meets the agreement with the European specification defined by EN 14214. Afterwards, the mixture of biodiesel and diesel were test in the engine with a ratio of 50/50(v/v), 20/80(v/v), and 0/100(v/v). It indicates the mixed fuel has a reasonable fuel consumption rates without diesel engine modification, when the biodiesel blended with 0# diesel as fuel. The present results demonstrated that the industrial scale plant would achieve promising objective with waste cooking oils and animal fats as raw material. Also, this biodiesel-based diesel fuel could be applied in Tianjin local public transportation system that improves its sustainable development.


Sign in / Sign up

Export Citation Format

Share Document