Experimental study on the effect of high-voltage electrical pulses on the nanoscale pore structure of coal

Fuel ◽  
2021 ◽  
Vol 306 ◽  
pp. 121621
Author(s):  
Zhen Ni ◽  
Baiquan Lin ◽  
Xiangliang Zhang ◽  
Xuan Cao ◽  
Lubin Zhong ◽  
...  
2016 ◽  
Vol 298 ◽  
pp. 50-56 ◽  
Author(s):  
Fazhi Yan ◽  
Baiquan Lin ◽  
Chuanjie Zhu ◽  
Chang Guo ◽  
Yan Zhou ◽  
...  

2019 ◽  
Vol 343 ◽  
pp. 560-567 ◽  
Author(s):  
Fazhi Yan ◽  
Jiang Xu ◽  
Baiquan Lin ◽  
Shoujian Peng ◽  
Quanle Zou ◽  
...  

Author(s):  
Yingxia Wei ◽  
Yaoxiang Liu ◽  
Tie-Jun Wang ◽  
Na Chen ◽  
Jingjing Ju ◽  
...  

We report on a systematic experimental study on the fluorescence spectra produced from a femtosecond laser filament in air under a high electric field. The electric field alone was strong enough to create corona discharge (CD). Fluorescence spectra from neutral and ionic air molecules were measured and compared with pure high-voltage CD and pure laser filamentation (FIL). Among them, high electric field assisted laser FIL produced nitrogen fluorescence more efficiently than either pure CD or pure FIL processes. The nonlinear enhancement of fluorescence from the interaction of the laser filament and corona discharging electric field resulted in a more efficient ionization along the laser filament zone, which was confirmed by the spectroscopic measurement of both ionization-induced fluorescence and plasma-scattered 800 nm laser pulses. This is believed to be the key precursor process for filament-guided discharge.


2010 ◽  
Vol 150-151 ◽  
pp. 825-828
Author(s):  
Yan Wang ◽  
Di Tao Niu ◽  
Yuan Yao Miao ◽  
Nai Qi Jiao

The concrete microstructure can affect its macroscopic properties, such as the strength and durability, etc. Based on the experimental study of cube compressive strength of steel fibre reinforced concrete, splitting tensile strength, flexural strength, and using by mercury intrusion method to test the pore structure of steel fibrous, this paper analyzes the influence of fibre on concrete pore structure. And then on mechanical properties of concrete from microcosmic perspective.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhen Liu ◽  
Mingrui Zhang ◽  
Shijian Yu ◽  
Lin Xin ◽  
Gang Wang ◽  
...  

Underground coal gasification and exploitation of geothermal mine resources can effectively improve coal conversion and utilization efficiency, and the basic theory of the above technologies generally relies on the change law of the coal pore structure under thermal damage. Therefore, the influence mechanism of the development of the coal pore structure under thermal damage is analyzed by the nuclear magnetic resonance experiment, and the temperature-permeability fractal model is created. The results show that compared with microtransitional pores, the volume of meso-macropores in the coal body is more susceptible to an increase in temperature, which was most obvious at 200-300°C. During the heating process, the measured fractal dimension based on the T2 spectral distribution is between 2 and 3, indicating that the fractal characteristics did not disappear upon a change in external temperature. The temperature has a certain negative correlation with DmNMR, DMNMR, and DNMR, indicating that the complexity of the pore structure of the coal body decreased gradually with the increase of the temperature. Compared with the permeability calculated based on the theoretical permeability fractal model, the permeability obtained from the temperature-permeability fractal model has a similar increasing trend as the permeability measured by the NMR experiment when the temperature increases. The experimental study on pore structure and permeability characteristics of the low metamorphic coal under thermal damage provides a scientific theory for underground coal gasification and geothermal exploitation.


Sign in / Sign up

Export Citation Format

Share Document