scholarly journals Enhanced biogas production in dilute acid-thermal pretreatment and cattle dung biochar mediated biomethanation of water hyacinth

Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121897
Author(s):  
Surindra Suthar ◽  
Bhawna Sharma ◽  
Kapil Kumar ◽  
J. Rajesh Banu ◽  
Vinay Kumar Tyagi
2018 ◽  
Vol 1 (02) ◽  
pp. 39-44
Author(s):  
Meylinda Mulyati

Water hyacinth is a waste that can be utilized by the community as an alternative potential for biogas energy. The formation of biogas from water hyacinth requires a residence time (LT) that is still long, which is between 30-35 days for the formation of methane. So that the process of forming methane is not too long, a stater is needed so that methanogenic bacteria can increase from cow dung so that the residence time is much shorter. The process of making biogas starts from making a digester, the process of taking water hyacinth by chopping water hyacinth, preparing cattle dung stater. The purpose of this study is to analyze technically and economically biogas from water hyacinth with cow manure stater. This research was carried out through several stages, namely: preparation of raw materials, stater and plastic biogas digester and techno-economic analysis. In this study the ratio of raw material 1: 1 (water hyacinth chopped 20 kg, water 20 kg) and the addition of stater cattle dung 6 kg. The results of this study are that the technical aspects of biogas start production after 10 days of filling the digester at pH 7.1. Biogas produced is known by direct flame test. Visible on the 10th day the resulting flame is still small, but this shows that the gas has been formed. The pH of the digester is between 4.7 and 8.5. The decrease in TS value from the inlet which is 46 kg to the outlet is 28 kg, indicating that there has been degradation in the substrate in the digester. On the economical aspect the investment cost of a biogas installation in a synthetic digester is IDR 1,500,000.00. Variable costs are the cost of water hyacinth, cow dung and water of Rp 150,000.00 per year. The Cost of Biogas Production is Rp 3,836.08 and if it is sold at a margin of 50% the selling price is Rp 5,800. The break even point in kilograms is 267.2 and in rupiahs is Rp 1.025,000.00. This payback period for investment in biogas business is 2.86 years.


1992 ◽  
Vol 36 (3) ◽  
pp. 163-169 ◽  
Author(s):  
Datta Madamwar ◽  
Anami Patel ◽  
Vikram Patel ◽  
N. V. Shastri

Informatics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 38
Author(s):  
Aman Basu ◽  
Amit Kumar Hazra ◽  
Shibani Chaudhury ◽  
Andrew B. Ross ◽  
Srinivasan Balachandran

This study aims to present a systematic data-driven bibliometric analysis of the water hyacinth (Eichhornia crassipes) infestation problem around the globe. As many solutions are being proposed in academia for its management, mitigation, and utilization, it requires investigation through a systematic scrutinizing lens. In this study, literature records from 1977 to June 2020 concerning research on water hyacinth are taken from Scopus for text analysis. Trends in the publication of different article types, dynamics of publication, clustering, correlation, and co-authoring patterns between different countries are observed. The cluster analysis indicated four clusters viz. (i) ecological works related to species, (ii) pollutant removal process and methods, (iii) utilization of biofuels for biogas production, and (iv) modelling works. It is clear from the networking analysis that most of the publications regarding water hyacinth are from India, followed by China and the United States. Sentiment analysis with the AFINN lexicon showed that the negative sentiment towards the aquatic weed has intensified over time. An exploratory analysis was performed using a bigram network plot, depicting and outlining different important domains of water hyacinth research. Water hyacinth research has passed the pioneering phase and is now at the end of a steady growth phase or at the beginning of an acceleration phase. In this article, an overview is given for the entirety of water hyacinth research, with an indication of future trends and possibilities.


2001 ◽  
Vol 44 (4) ◽  
pp. 109-116 ◽  
Author(s):  
A. Bonmatí ◽  
X. Flotats ◽  
L. Mateu ◽  
E. Campos

Feasibility of anaerobic digestion of pig slurry is dependent, among other factors, on the biogas production rate, which is low compared with other organic wastes, and on the profitable uses of surplus thermal energy produced, a limiting factor in warm geographical areas. The objectives of this work are determining whether low temperature thermal pretreatment (<90°C) improves pig slurry anaerobic digestion, and determining whether organic matter degradation during the thermal pretreatment is due to thermal phenomena (80°C) or to enzymatic ones (60°C). The thermal degradation tests showed that hydrolysis occurring during the thermal pretreatment is due to thermal phenomena. The increase in soluble substances were significantly larger at 80°C than at 60°C (both during 3 h). Two types of slurry were used in the batch anaerobic digestion tests. The effect of thermal pretreatment differed with the type of slurry: it was positive with almost non-degraded slurries containing low NH4+-N concentration, and negative (inhibition of the anaerobic digestion process) when using degraded slurries with high NH4+-N content.


2022 ◽  
Author(s):  
Adedeji A. Adelodun ◽  
Temitope M. Olajire ◽  
Ochuko Mary Ojo

Using biomass as a renewable energy source has earned tremendous interest from researchers in recent decades, especially because the technology is environmentally benign. This article reviews the recent methods for generating biogas from water hyacinth (WH, Eichornia crassipes), arguably the world’s most evasive aquatic macrophyte. Therefore, various economic, environmentally benign, and renewable procedures that enhance biogas production from WH biomass are reviewed. WH has been co-digested with numerous waste types, including poultry droppings, municipal wastes, animal tissue wastes, pig wastes, cow dungs, etc., recording varying success degrees. Other studies focused on optimizing the operation parameters, such as mixing ratio, contact time, pH, temperature, organic loading rate, etc. We observed that most attempts to generate biogas from WH alone were not promising. However, when co-digested with other biomasses or wastes, WH either increases the process rate or improves the methane yield content. Also, the potential of WH as a phytoremdiator-cum-biogas source was investigated. This chapter provides mathematical models, scale-up installation models, and specific experimental results from various studies to guide future study plans toward optimizing CH4 generation from WH co-digestion.


In this paper three sustainable approaches are made in waste management option. Firstly primary treated domestic sewage is treated by aquatic macrophytes using duckweed, water hyacinth and water lettuce. Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Phosphate, Nitrates are tested before and after. Result indicates in terms of water quality, almost all three plants shows same removal efficiencies. BOD and TSS removal efficiency is attained more than 95%. COD and TDS removal is reached upto 50% for almost all plants. Secondly the used aquatic macrophytes for wastewater treatment is again used for generation of biogas (water lettuce unit, duckweed unit, water lettuce unit). In addition to three aquatic macrophytes, sludge is collected from aquatic macrophyte unit for generation of biogas. Comparison is made with conventional cow dung biogas unit. Result indicates water lettuce and duckweed produce biogas at earlier stage itself and water hyacinth takes some time for starting of biogas production. This may be due to the structure and texture causes some time for decomposition. Sludge gives maximum biogas generation among all experimental setup. Also in this study cow dung did not give biogas more may be due to poor blend ratio of cow dung with water is one of the reason.


Sign in / Sign up

Export Citation Format

Share Document