The relationship between trunk position sense and postural control in ataxic individuals

2019 ◽  
Vol 68 ◽  
pp. 258-263 ◽  
Author(s):  
Özge Onursal Kılınç ◽  
Ender Ayvat ◽  
Fatma Ayvat ◽  
Gülşah Sütçü ◽  
Muhammed Kılınç ◽  
...  
2019 ◽  
pp. 3-13
Author(s):  
Alexandru Cîtea ◽  
George-Sebastian Iacob

Posture is commonly perceived as the relationship between the segments of the human body upright. Certain parts of the body such as the cephalic extremity, neck, torso, upper and lower limbs are involved in the final posture of the body. Musculoskeletal instabilities and reduced postural control lead to the installation of nonstructural posture deviations in all 3 anatomical planes. When we talk about the sagittal plane, it was concluded that there are 4 main types of posture deviation: hyperlordotic posture, kyphotic posture, rectitude and "sway-back" posture.Pilates method has become in the last decade a much more popular formof exercise used in rehabilitation. The Pilates method is frequently prescribed to people with low back pain due to their orientation on the stabilizing muscles of the pelvis. Pilates exercise is thus theorized to help reactivate the muscles and, by doingso, increases lumbar support, reduces pain, and improves body alignment.


2015 ◽  
Vol 24 (1) ◽  
pp. 6-12 ◽  
Author(s):  
Tiffany Switlick ◽  
Thomas W. Kernozek ◽  
Stacey Meardon

Context:A relationship between altered postural control and injury has been reported in sports. Sensorimotor function serves a fundamental role in postural control and is not often studied in runners. Persons who sustain running injury may have altered sensorimotor function contributing to risk of injury or reinjury.Objectives:To determine if differences in knee and ankle proprioception or plantar sensation exist between injured and noninjured runners.Design:Retrospective case-control study.Setting:University campus.Participants:Twenty runners with a history of lower-extremity overuse injury and 20 noninjured runners were examined. Injured runners were subcategorized into 2 groups based on site of injury: foot/ankle and knee/hip.Main Outcome Measures:Active absolute joint-repositioning error of the ankle at 20° inversion and 10° eversion and the knee at 15° and 40° flexion was assessed using an isokinetic dynamometer. Vibratory threshold at the calcaneus, arch, and great toe was determined for each subject using a handheld electric sensory threshold instrument.Results:Runners in the injured-foot/ankle group had increased absolute error during ankle-eversion repositioning (6.55° ± 3.58°) compared with those in the noninjured (4.04° ± 1.78°, P = .01) and the hip/knee (3.63° ± 2.2°, P = .01) groups. Runners in the injured group, as a whole, had greater sensitivity in the arch of the plantar surface (2.94 ± 0.52 V) than noninjured runners (2.38 ± 0.53 V, P = .02).Conclusions:Differences in ankle-eversion proprioception between runners with a history of ankle and foot injuries and noninjured runners were observed. Runners with a history of injury also displayed an increased vibratory threshold in the arch region compared with noninjured runners. Poor ankle-joint-position sense and increased plantar sensitivity suggest altered sensorimotor function after injury. These factors may influence underlying postural control and contribute to altered loading responses commonly observed in injured runners.


1985 ◽  
Vol 90 (1) ◽  
pp. 129-138 ◽  
Author(s):  
T. Jakobs ◽  
J.A.A. Miller ◽  
A.B. Schultz

2017 ◽  
Vol 80 (9) ◽  
pp. 539-548
Author(s):  
Anna Rossiter ◽  
Matthew J Allsop ◽  
Rachael K Raw ◽  
Lindsay Howard ◽  
Raymond J Holt ◽  
...  

Introduction Older adults show increased postural sway and a greater risk of falls when completing activities with high cognitive demands. While dual-task approaches have clarified an association between cognitive processes and postural control, it is unclear how manual ability, which is also required for the successful completion of cognitively demanding tasks (such as putting a key into a lock), affects this relationship. Method Kinematic technology was used to explore the relationship between postural sway and manual control in healthy younger and older adults. Participants ( n = 82) remained standing to complete a visual-motor tracking task on a tablet computer. Root mean square tracking error measured manual performance, and a balance board measured deviations in centre of pressure as a marker of postural sway. Results Older adults displayed poorer manual accuracy and increased postural sway across all testing conditions. Conclusions Cognitive capacity can interact with multiple task demands, and in turn affect postural sway in older adults. Improving our understanding of factors that influence postural control will assist falls-prevention efforts and inform clinical practice.


2008 ◽  
Vol 32 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Susan Ryerson ◽  
Nancy N. Byl ◽  
David A. Brown ◽  
Rita A. Wong ◽  
Joseph M. Hidler

2016 ◽  
Vol 24 (2) ◽  
pp. 196-200 ◽  
Author(s):  
Bożena Wojciechowska-Maszkowska ◽  
Dorota Borzucka ◽  
Aleksandra Maria Rogowska ◽  
Michał Kuczyński

Physical activity is known to have beneficial effects on a host of factors related to physical and mental health, and positively affects postural control. However, there is no agreement on which measures of postural control and to what extent they are dependent on the past and present physical activity in older adults. To answer this question we compared the postural performance in a 20-s quiet stance with eyes open on a Kistler force plate in 38 subjects, aged 60–92, who were formerly and are currently physically active (AA) with those who were always inactive (II) and those who were either formerly (AI) or are currently (IA) active. Results indicated that only current activity promoted better postural control while former activity was ineffective. Postural control in AA and IA was very similar and much better than in II and AI who, in contrast, displayed similarly deteriorated postural control.


2016 ◽  
Vol 25 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Mutlu Cug ◽  
Erik A. Wikstrom ◽  
Bahman Golshaei ◽  
Sadettin Kirazci

Context:Both female athletes’ participation in soccer and associated injuries have greatly increased in recent years. One issue is the 2–9 times greater incidence of noncontact anterior cruciate ligament (ACL) injuries in female athletes relative to male athletes in comparable sports. Several factors such as limb dominance and sporting history have been proposed to play a role in ACL incidence rates between male and female athletes. However, evidence about the effects of these factors and how they interact with sex is mixed, and thus no consensus exists.Objective:To quantify the effects of sports participation, limb dominance, and sex on dynamic postural control and knee-joint proprioception.Design:Cross-sectional study.Setting:University research laboratory.Participants:19 male soccer players, 17 female soccer players, 19 sedentary men, and 18 sedentary women.Intervention:Joint-position sense was tested using reproduction of passive positioning on a Biodex isokinetic dynamometer (30°, 45°, and 60° from 90° of knee flexion). Three Star Excursion Balance Test directions were used to assess dynamic postural control.Main Outcome Measure:Normalized reach distance (% of leg length) in the anterior, posteromedial, and posterolateral directions on each leg quantified dynamic postural control. Average absolute error and constant error for both limbs quantified joint-position sense.Results:Posteromedial reach distance was significantly better in soccer players than sedentary individuals (P = .006). Anterior reach distance was significantly better (P = .04) in sedentary individuals than soccer players. No limb-dominance or sex differences were identified for dynamic postural control, and no differences in absolute- or constant-error scores were identified.Conclusion:Sporting history has a direction-specific impact on dynamic postural control. Sporting history, sex, and limb dominance do not influence knee-joint proprioception when tested in an open kinetic chain using passive repositioning.


Sign in / Sign up

Export Citation Format

Share Document