Nd isotope and trace element characteristics of the Mesoarchean (3075 Ma) Ivisaartoq greenstone belt, SW Greenland: Evidence for two distinct subarc mantle sources

2006 ◽  
Vol 70 (18) ◽  
pp. A499
Author(s):  
A. Polat ◽  
R. Frei ◽  
Y. Dilek
Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 711
Author(s):  
Irina Nedosekova ◽  
Nikolay Vladykin ◽  
Oksana Udoratina ◽  
Boris Belyatsky

The Ilmeno–Vishnevogorsk (IVC), Buldym, and Chetlassky carbonatite complexes are localized in the folded regions of the Urals and Timan. These complexes differ in geochemical signatures and ore specialization: Nb-deposits of pyrochlore carbonatites are associated with the IVC, while Nb–REE-deposits with the Buldym complex and REE-deposits of bastnäsite carbonatites with the Chetlassky complex. A comparative study of these carbonatite complexes has been conducted in order to establish the reasons for their ore specialization and their sources. The IVC is characterized by low 87Sr/86Sri (0.70336–0.70399) and εNd (+2 to +6), suggesting a single moderately depleted mantle source for rocks and pyrochlore mineralization. The Buldym complex has a higher 87Sr/86Sri (0.70440–0.70513) with negative εNd (−0.2 to −3), which corresponds to enriched mantle source EMI-type. The REE carbonatites of the Chetlassky сomplex show low 87Sr/86Sri (0.70336–0.70369) and a high εNd (+5–+6), which is close to the DM mantle source with ~5% marine sedimentary component. Based on Sr–Nd isotope signatures, major, and trace element data, we assume that the different ore specialization of Urals and Timan carbonatites may be caused not only by crustal evolution of alkaline-carbonatite magmas, but also by the heterogeneity of their mantle sources associated with different degrees of enrichment in recycled components.


2003 ◽  
Vol 67 (5) ◽  
pp. 831-853 ◽  
Author(s):  
R. Halama ◽  
T. Wenzel ◽  
B. G. J. Upton ◽  
W. Siebel ◽  
G. Markl

AbstractBasalts from the volcano-sedimentary Eriksfjord Formation (Gardar Province, South Greenland) were erupted at around 1.2 Ga into rift-related graben structures. The basalts have compositions transitional between tholeiite and alkaline basalt with MgO contents <7 wt.% and they display LREE-enrichment relative to a chondritic source. Most of the trace element and REE characteristics are similar to those of basalts derived from OIB-like mantle sources. Initial 87Sr/86Sr ratios of clinopyroxene separates range from 0.70278 to 0.70383 and initial ϵNd values vary from –3.2 to +2.1. The most unradiogenic samples overlap with the field defined by carbonatites of similar age and can be explained by mixing of isotopically depleted and enriched mantle components. Using AFC modelling equations, the Sr-Nd isotope data of the more radiogenic basalts can successfully be modelled by addition of <5% lower crustal granulite-facies gneisses as contaminants. δ18Ov-smow values of separated clinopyroxene range from +5.2 to +6.0% and fall within the range of typical mantle-derived rocks. However, up to 10% mixing with an average lower crustal component are permitted by the data.


Lithos ◽  
2021 ◽  
Vol 382-383 ◽  
pp. 105959
Author(s):  
Om Prakash Pandey ◽  
Klaus Mezger ◽  
Dewashish Upadhyay ◽  
Debajyoti Paul ◽  
Ajay Kumar Singh ◽  
...  

2006 ◽  
Vol 101 (8) ◽  
pp. 1613-1622 ◽  
Author(s):  
Y.-h. Jiang ◽  
H.-f. Ling ◽  
S.-y. Jiang ◽  
W.-z. Shen ◽  
H.-h. Fan ◽  
...  

Lithos ◽  
2017 ◽  
Vol 290-291 ◽  
pp. 48-59 ◽  
Author(s):  
Marco G. Malusà ◽  
Jiangang Wang ◽  
Eduardo Garzanti ◽  
Zhi-Chao Liu ◽  
Igor M. Villa ◽  
...  

Author(s):  
John D. Greenough ◽  
Alejandro Velasquez ◽  
Mohamed Shaheen ◽  
Joel Gagnon ◽  
Brian J. Fryer ◽  
...  

Trace elements in native gold provide a “fingerprint” that tends to be unique to individual gold deposits. Fingerprinting can distinguish gold sources and potentially yield insights into geochemical processes operating during gold deposit formation. Native gold grains come from three historical gold ore deposits; Hollinger, McIntyre (quartz-vein ore), and Aunor near Timmins, Ontario, at the western end of the Porcupine gold camp and the south-western part of the Abitibi greenstone belt. Laser-ablation, inductively-coupled plasma mass spectrometry (LA ICP MS) trace element concentrations were determined on 20 to 25 µm wide, 300 µm long rastor trails in ~ 60 native gold grains. Analyses used Ag as an internal standard with Ag and Au determined by a scanning electron microscope with an energy dispersive spectrometer. The London Bullion Market AuRM2 reference material served as the external standard for 21 trace element analytes (Al, As, Bi, Ca, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Pd, Pt, Rh, Sb, Se, Si, Sn, Te, Ti, Zn; Se generally below detection in samples). Trace elements in native gold associate according to Goldschmidt’s classification of elements strongly suggesting that element behavior in native Au is not random. Such element behavior suggests that samples from each Timmins deposit formed under similar but slightly variable geochemical conditions. Chalcophile and siderophile elements provide the most compelling fingerprints of the three ore deposits and appear to be mostly in solid solution in Au. Lithophile elements are not very useful for distinguishing these deposits and element ABSTRACT CUT OFF BY SOFTWARE


Sign in / Sign up

Export Citation Format

Share Document