Particle morphological and roughness controls on mineral surface charge development

2014 ◽  
Vol 141 ◽  
pp. 567-578 ◽  
Author(s):  
Jean-François Boily ◽  
Philipp A. Kozin
2012 ◽  
Vol 46 (5) ◽  
pp. 2755-2763 ◽  
Author(s):  
Dien Li ◽  
Daniel I. Kaplan ◽  
Kimberly A. Roberts ◽  
John C. Seaman

Minerals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 372 ◽  
Author(s):  
Lev Filippov ◽  
Saeed Farrokhpay ◽  
Lichau Lyo ◽  
Inna Filippova

Fine and coarse fractions of spodumene were obtained from a pegmatite ore and their flotation was investigated under different conditions. In particular, the optimum pH and collector dosage were studied. It was found that the best flotation performance occurs at pH 10 using 250 mg/L of sodium oleate. It was also observed that upon the addition of CaCl2, spodumene flotation recovery increases to about 90%. In addition, poor floatability was found for spodumene when Na2CO3 was used as a pH regulator (compared to NaOH).The zeta potential data confirmed the adsorption of oleate on the spodumene surface. It was found that activation of spodumene by calcium ions makes the surface charge less negative due to the adsorption of Ca2+ on the surface. The crystallographic properties of spodumene were analyzed. The adsorption of sodium oleate was attributed to the chemisorption of oleate to the exposed Al and Si sites generated after breakage of the Al–O and Si–O bonds on the mineral surface. It was observed that the {110} planes are the most favorable for the adsorption of oleate. The {110} plane is the weakest plane, and spodumene has the highest tendency to cleave along this plane. The XRD data revealed that fine spodumene particles have more {110} planes than the coarser fraction, which may explain why the former has better floatability.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 629 ◽  
Author(s):  
Long ◽  
Huang ◽  
Xiao

Serpentine, a magnesium silicate mineral with positive surface charge in many sulfide ores around the world, usually deteriorates the flotation behavior by covering the target mineral surface. In this paper, the effect of surface potential regulation on serpentine flotation was revealed by flocculation experiments, zeta potential measurements, infrared spectrum analysis, and DLVO theoretical calculations. The experimental results of flocculation and sedimentation show that heterogeneous coagulation easily occurs between serpentine and pyrite particles, which reduces the floatability of pyrite. Reducing the surface potential of serpentine is an effective way to eliminate heterogeneous coagulation between minerals. The key to regulating the surface potential of serpentine is Mg2+ ion dissolution from the serpentine surface to the liquid phase. Phosphates, especially sodium hexametaphosphate, can enhance Mg2+ ion dissolution from the serpentine surface to the liquid phase and react with Mg2+ ions in the liquid phase to form stable soluble complexes.


Author(s):  
N.J. Tao ◽  
J.A. DeRose ◽  
P.I. Oden ◽  
S.M. Lindsay

Clemmer and Beebe have pointed out that surface structures on graphite substrates can be misinterpreted as biopolymer images in STM experiments. We have been using electrochemical methods to react DNA fragments onto gold electrodes for STM and AFM imaging. The adsorbates produced in this way are only homogeneous in special circumstances. Searching an inhomogeneous substrate for ‘desired’ images limits the value of the data. Here, we report on a reversible method for imaging adsorbates. The molecules can be lifted onto and off the substrate during imaging. This leaves no doubt about the validity or statistical significance of the images. Furthermore, environmental effects (such as changes in electrolyte or surface charge) can be investigated easily.


Author(s):  
V.K. Berry

There are two strains of bacteria viz. Thiobacillus thiooxidansand Thiobacillus ferrooxidanswidely mentioned to play an important role in the leaching process of low-grade ores. Another strain used in this study is a thermophile and is designated Caldariella .These microorganisms are acidophilic chemosynthetic aerobic autotrophs and are capable of oxidizing many metal sulfides and elemental sulfur to sulfates and Fe2+ to Fe3+. The necessity of physical contact or attachment by bacteria to mineral surfaces during oxidation reaction has not been fairly established so far. Temple and Koehler reported that during oxidation of marcasite T. thiooxidanswere found concentrated on mineral surface. Schaeffer, et al. demonstrated that physical contact or attachment is essential for oxidation of sulfur.


Sign in / Sign up

Export Citation Format

Share Document