Characterization of F-spondin in Japanese flounder (Paralichthys olivaceus) and its role in the nervous system development of teleosts

Gene ◽  
2016 ◽  
Vol 575 (2) ◽  
pp. 623-631 ◽  
Author(s):  
Hongshuang Hu ◽  
Nian Xin ◽  
Jinxiang Liu ◽  
Mengmeng Liu ◽  
Zhenwei Wang ◽  
...  
2021 ◽  
Author(s):  
Matthew M Bueno de Mesquita

During the development of the nervous system, guidance cues provide directional information to the growth cones of migrating axons. In C. elegans, ventral to dorsal migration is in part mediated by the ligand UNC-6 and its receptor UNC-5. In an UNC-5 null mutant the DA and DB motor neuron axons fail to migrate in a wild type manner to the dorsal cord, despite initial dorsalward outgrowth from the cell bodies. A genetic enhancer screen was conducted in an UNC-5 null strain and one mutant, rq1, was found to have increased axon guidance defects. To identify the mutated gene in rq1, microinjection experiments were performed and were able to rescue two rq1 phontypes. RNAi experiments were performed where double stranded RNA corresponding to all the genes in the region were used individually to knock out the transcripts. Several of these were able to phenocopy the defects of rq1. The rq1 mutation could be located in any one of five genes known to be present on the rescuing cosmid while combined results implicate three strong candidate genes, M03C11.8, H04D03.1 and H04D03.4.


2021 ◽  
Author(s):  
Matthew M Bueno de Mesquita

During the development of the nervous system, guidance cues provide directional information to the growth cones of migrating axons. In C. elegans, ventral to dorsal migration is in part mediated by the ligand UNC-6 and its receptor UNC-5. In an UNC-5 null mutant the DA and DB motor neuron axons fail to migrate in a wild type manner to the dorsal cord, despite initial dorsalward outgrowth from the cell bodies. A genetic enhancer screen was conducted in an UNC-5 null strain and one mutant, rq1, was found to have increased axon guidance defects. To identify the mutated gene in rq1, microinjection experiments were performed and were able to rescue two rq1 phontypes. RNAi experiments were performed where double stranded RNA corresponding to all the genes in the region were used individually to knock out the transcripts. Several of these were able to phenocopy the defects of rq1. The rq1 mutation could be located in any one of five genes known to be present on the rescuing cosmid while combined results implicate three strong candidate genes, M03C11.8, H04D03.1 and H04D03.4.


2013 ◽  
Vol 14 (2) ◽  
pp. 160-166
Author(s):  
Diego Gazzolo ◽  
Laura D. Serpero ◽  
Alessandro Frigiola ◽  
Raul Abella ◽  
Alessandro Giamberti ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1453
Author(s):  
Joaquín Martí-Clúa

The synthetic halogenated pyrimidine analog, 5-bromo-2′-deoxyuridine (BrdU), is a marker of DNA synthesis. This exogenous nucleoside has generated important insights into the cellular mechanisms of the central nervous system development in a variety of animals including insects, birds, and mammals. Despite this, the detrimental effects of the incorporation of BrdU into DNA on proliferation and viability of different types of cells has been frequently neglected. This review will summarize and present the effects of a pulse of BrdU, at doses ranging from 25 to 300 µg/g, or repeated injections. The latter, following the method of the progressively delayed labeling comprehensive procedure. The prenatal and perinatal development of the cerebellum are studied. These current data have implications for the interpretation of the results obtained by this marker as an index of the generation, migration, and settled pattern of neurons in the developing central nervous system. Caution should be exercised when interpreting the results obtained using BrdU. This is particularly important when high or repeated doses of this agent are injected. I hope that this review sheds light on the effects of this toxic maker. It may be used as a reference for toxicologists and neurobiologists given the broad use of 5-bromo-2′-deoxyuridine to label dividing cells.


2021 ◽  
Vol 81 (3) ◽  
pp. 229-230
Author(s):  
Frank Bradke ◽  
Antonina Roll‐Mecak

Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Christoph Giez ◽  
Alexander Klimovich ◽  
Thomas C. G. Bosch

Abstract Animals have evolved within the framework of microbes and are constantly exposed to diverse microbiota. Microbes colonize most, if not all, animal epithelia and influence the activity of many organs, including the nervous system. Therefore, any consideration on nervous system development and function in the absence of the recognition of microbes will be incomplete. Here, we review the current knowledge on the nervous systems of Hydra and its role in the host–microbiome communication. We show that recent advances in molecular and imaging methods are allowing a comprehensive understanding of the capacity of such a seemingly simple nervous system in the context of the metaorganism. We propose that the development, function and evolution of neural circuits must be considered in the context of host–microbe interactions and present Hydra as a strategic model system with great basic and translational relevance for neuroscience.


Sign in / Sign up

Export Citation Format

Share Document