First mitochondrial genomes of Chrysopetalidae (Annelida) from shallow-water and deep-sea chemosynthetic environments

Gene ◽  
2022 ◽  
pp. 146159
Author(s):  
Benjamin Cejp ◽  
Ascensão Ravara ◽  
M. Teresa Aguado
2021 ◽  
Vol 22 (4) ◽  
pp. 1900
Author(s):  
Kai Zhang ◽  
Jin Sun ◽  
Ting Xu ◽  
Jian-Wen Qiu ◽  
Pei-Yuan Qian

Mitochondrial genomes (mitogenomes) are an excellent source of information for phylogenetic and evolutionary studies, but their application in marine invertebrates is limited. In the present study, we utilized mitogenomes to elucidate the phylogeny and environmental adaptation in deep-sea mussels (Mytilidae: Bathymodiolinae). We sequenced and assembled seven bathymodioline mitogenomes. A phylogenetic analysis integrating the seven newly assembled and six previously reported bathymodioline mitogenomes revealed that these bathymodiolines are divided into three well-supported clades represented by five Gigantidas species, six Bathymodiolus species, and two “Bathymodiolus” species, respectively. A Common interval Rearrangement Explorer (CREx) analysis revealed a gene order rearrangement in bathymodiolines that is distinct from that in other shallow-water mytilids. The CREx analysis also suggested that reversal, transposition, and tandem duplications with subsequent random gene loss (TDRL) may have been responsible for the evolution of mitochondrial gene orders in bathymodiolines. Moreover, a comparison of the mitogenomes of shallow-water and deep-sea mussels revealed that the latter lineage has experienced relaxed purifying selection, but 16 residues of the atp6, nad4, nad2, cob, nad5, and cox2 genes have underwent positive selection. Overall, this study provides new insights into the phylogenetic relationships and mitogenomic adaptations of deep-sea mussels


Author(s):  
Michel Praet-Van

This ultrastructural investigation of gametogenesis in a deep-sea anemone of the Bay of Biscay trawled around 2000 m depth, contributes to the knowledge of biology and strategy of reproduction of deep-sea benthos.This sea anemone is dioecious. The sperm appears very similar to those of shallow water sea anemones of the genus, Calliactis. The ultrastructural investigation of oogenesis allows the characteristics of the stages of previtellogenesis and vitellogenesis to be defined. The latter begins with a period of lipogenesis correlated with the formation of a trophonema. Mature oocytes measure up to 180 (im in diameter. Study of spermatogenesis and oogenesis reveals that spawning occurs in April/May. In males, the main area of testicular cysts, full of sperm, reaches maximal development from March to May and, in females, the percentage of mature oocytes decreases from 33% in April to 1% in May.Spawning may be induced by the advent in the deep-sea of the products of the spring phytoplankton bloom. This period of spawning, during the increased deposition of organic matter to the deep-sea floor, may be an advantageous strategy for early development of Paracalliactis.


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Akiko Kyuno ◽  
Mifue Shintaku ◽  
Yuko Fujita ◽  
Hiroto Matsumoto ◽  
Motoo Utsumi ◽  
...  

We sequenced the mitochondrial ND4 gene to elucidate the evolutionary processes ofBathymodiolusmussels and mytilid relatives. Mussels of the subfamily Bathymodiolinae from vents and seeps belonged to 3 groups and mytilid relatives from sunken wood and whale carcasses assumed the outgroup positions to bathymodioline mussels. Shallow water mytilid mussels were positioned more distantly relative to the vent/seep mussels, indicating an evolutionary transition from shallow to deep sea via sunken wood and whale carcasses.Bathymodiolus platifronsis distributed in the seeps and vents, which are approximately 1500 km away. There was no significant genetic differentiation between the populations. There existed high gene flow betweenB. septemdierumandB. breviorand low but not negligible gene flow betweenB. marisindicusandB. septemdierumorB. brevior, although their habitats are 5000–10 000 km away. These indicate a high adaptability to the abyssal environments and a high dispersal ability ofBathymodiolusmussels.


2010 ◽  
Vol 6 (5) ◽  
pp. 685-687 ◽  
Author(s):  
Julien M. Claes ◽  
Jérôme Mallefet

Bioluminescence is a common feature in the permanent darkness of the deep-sea. In fishes, light is emitted by organs containing either photogenic cells (intrinsic photophores), which are under direct nervous control, or symbiotic luminous bacteria (symbiotic photophores), whose light is controlled by secondary means such as mechanical occlusion or physiological suppression. The intrinsic photophores of the lantern shark Etmopterus spinax were recently shown as an exception to this rule since they appear to be under hormonal control. Here, we show that hormones operate what amounts to a unique light switch, by acting on a chromatophore iris, which regulates light emission by pigment translocation. This result strongly suggests that this shark's luminescence control originates from the mechanism for physiological colour change found in shallow water sharks that also involves hormonally controlled chromatophores: the lantern shark would have turned the initial shallow water crypsis mechanism into a midwater luminous camouflage, more efficient in the deep-sea environment.


2021 ◽  
Author(s):  
Durr E Shehwar ◽  
Sana Gul ◽  
Muhammad Usama Zafar ◽  
Urooj Shaukat ◽  
Ali Hassan Syed ◽  
...  

2020 ◽  
Vol 49 (3) ◽  
pp. 340-356
Author(s):  
Paula C. Rodríguez‐Flores ◽  
David Buckley ◽  
Enrique Macpherson ◽  
Laure Corbari ◽  
Annie Machordom

Paleobiology ◽  
1976 ◽  
Vol 2 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Thomas J. M. Schopf

Bryozoans are colonial animals and this permits the partitioning of their morphologic variability into components of within colony (i.e. within a single genotype) and between colony (i.e. between genotype) variance. These data have been obtained for four species of the endemic deep-sea genus Euginoma for a series of characters. In 8 comparisons, one component of the total variance dominated at the 5% level. Population (between colony) variance contributed significantly to the total variance in 63% of the comparisons (5 of 8); individual (within colony) variance contributed significantly to the total variance in 37% of the comparisons (3 of 8).Compared to shallow water species, the surprising feature of the deep-sea data is that the between colony component of variance is as high as it is. Possibly in the more stable, deep-sea environment, the genotypic contribution to the variance of each individual colony is expressed to a greater degree than in the more variable, shallow water regime. If so, then analyses of variability in colonial animals may be an independent means of ascertaining stability gradients in the fossil record.


Zootaxa ◽  
2017 ◽  
Vol 4299 (3) ◽  
pp. 405
Author(s):  
TOMOYUKI KOMAI ◽  
HISANORI KOHTSUKA

A new species of the rare caridean genus Bresilia Calman, 1896, B. cinctus, is described and illustrated on the basis of a single ovigerous female specimen collected from Sagami Bay, central Japan, at 218–318 m depth. The new species is morphologically most similar to B. rufioculus Komai & Yamada, 2011, known only from shallow water cave of Ie Island (depths 14–17 m), Okinawa Islands, Ryukyu Islands, but many characters, including the proportionally shorter rostrum, the well developed suborbital lobe of the carapace, and the presence of a spiniform seta on the ventral surface of the pereopod 1 palm, immediately distinguish the new species from B. rufioculus. Bresilia cinctus n. sp. is the first species of the genus known from the Japanese main islands. The discovery of the new species led us to reassess the merit of the informal division of Bresilia proposed by Komai & Yamada (2010). An identification key to the ten named species of Bresilia is presented. 


Sign in / Sign up

Export Citation Format

Share Document