The phenotypic and genotypic characteristics of biofilm formation and SCCmec typing of Staphylococcus epidermidis isolated from different sources

Gene Reports ◽  
2019 ◽  
Vol 17 ◽  
pp. 100444 ◽  
Author(s):  
Nima Mohammadzadeh ◽  
Fathollah Teymouri ◽  
Shabnam Razavi ◽  
Meysam Hasannejad-Bibalan ◽  
Abed Zahedi Bialvaei ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Shudan Lin ◽  
Bianjin Sun ◽  
Xinrui Shi ◽  
Yi Xu ◽  
Yunfeng Gu ◽  
...  

Coagulase-negative Staphylococcus (CoNS) is the most common pathogen causing traumatic endophthalmitis. Among which, Staphylococcus epidermidis is the most common species that colonizes human skin, eye surfaces, and nasal cavity. It is also the main cause of nosocomial infection, specially foreign body-related bloodstream infections (FBR-BSIs). Although some studies have reported the genome characteristics of S. epidermidis, the genome of ocular trauma-sourced S. epidermidis strain and a comprehensive understanding of its pathogenicity are still lacking. Our study sequenced, analyzed, and reported the whole genomes of 11 ocular trauma-sourced samples of S. epidermidis that caused traumatic endophthalmitis. By integrating publicly available genomes, we obtained a total of 187 S. epidermidis samples from healthy and diseased eyes, skin, respiratory tract, and blood. Combined with pan-genome, phylogenetic, and comparative genomic analyses, our study showed that S. epidermidis, regardless of niche source, exhibits two founder lineages with different pathogenicity. Moreover, we identified several potential biomarkers associated with the virulence of S. epidermidis, including essD, uhpt, sdrF, sdrG, fbe, and icaABCDR. EssD and uhpt have high homology with esaD and hpt in Staphylococcus aureus, showing that the genomes of S. epidermidis and S. aureus may have communicated during evolution. SdrF, sdrG, fbe, and icaABCDR are related to biofilm formation. Compared to S. epidermidis from blood sources, ocular-sourced strains causing intraocular infection had no direct relationship with biofilm formation. In conclusion, this study provided additional data resources for studies on S. epidermidis and improved our understanding of the evolution and pathogenicity among strains of different sources.


2021 ◽  
Author(s):  
Shudan Lin ◽  
Bianjin Sun ◽  
Xinrui Shi ◽  
Yi Xu ◽  
Yunfeng Gu ◽  
...  

Coagulase-negative Staphylococcus (CoNS) is the most common pathogen causing traumatic endophthalmitis, Staphylococcus epidermidis is the most common species which colonizes human skin, eye surfaces and nasal cavity and is the main cause of nosocomial infection, specially foreign body-related bloodstream infections (FBR-BSIs). Although some studies have reported the genome characteristics of S. epidermidis, a comprehensive understanding of its pathogenicity and the genome of ocular trauma-sourced strains is still lacking. In this study, we sequenced, analyzed and reported the whole genomes of 11 ocular trauma-sourced samples of S. epidermis that caused traumatic endophthalmitis. By integrating publicly available genomes, we obtained a total of 187 S. epidermis samples from healthy and diseased eyes, skin, respiratory tract and blood. Combined with pangenome, phylogenetic and comparative genomic analyses, our study supported that S. epidermidis, regardless of niche source, exhibits two founder lineages with different pathogenicities. Moreover, we identified potential biomarkers associated with the virulence of S. epidermis, namely, essD, uhpt, sdrF, sdrG, fbe and icaABCDR. The essD and uhpt genes have high homology with esaD and hpt in Staphylococcus aureus, showing that the genomes of S. epidermidis and S. aureus may have communicated during evolution, while the sdrF, sdrG, fbe, and icaABCDR genes are related to biofilm formation. Compared to S. epidermidis from blood sources, ocular-sourced strains causing intraocular infection had no direct relationship with biofilm formation. In conclusion, this study not only provided additional data resources for studies on S. epidermidis is, but also improved understanding of the evolution and pathogenicity of different source strains.


2014 ◽  
Vol 17 (2) ◽  
pp. 321-329 ◽  
Author(s):  
K. Wolska ◽  
P. Szweda ◽  
K. Lada ◽  
E. Rytel ◽  
K. Gucwa ◽  
...  

AbstractThe molecular-typing strategy, ERIC-PCR was used in an attempt to determine the genomic relationship of 28 P. aeruginosa strains isolated from faeces of healthy bovine, bovine mastitis and from faeces of hospital patients as well as from environment. ERIC-PCR fingerprinting revealed large molecular differentiation within this group of isolates. Twenty two out of 28 strains tested generated unique patterns of DNA bands and only three genotypes consisted of two isolates each were identified. We also tested the P. aeruginosa isolates for their ability to form a biofilm on abiotic surfaces including polyvinylchloride and polystyrene. Different biofilm-forming abilities were demonstrated among strains; however, most of them (64.3%) showed moderate-biofilm forming ability. The strains with increased swimming and twitching motility displayed elevated biofilm formation. However, a negative correlation was found between slime and initial biofilm production. On the basis of the results obtained, we suggest that there are no major differences in phenotypic properties between P. aeruginosa strains isolated from different sources


2020 ◽  
Vol 8 (3) ◽  
pp. 344 ◽  
Author(s):  
Urška Ribič ◽  
Jernej Jakše ◽  
Nataša Toplak ◽  
Simon Koren ◽  
Minka Kovač ◽  
...  

Staphylococcus epidermidis cleanroom strains are often exposed to sub-inhibitory concentrations of disinfectants, including didecyldimethylammonium chloride (DDAC). Consequently, they can adapt or even become tolerant to them. RNA-sequencing was used to investigate adaptation and tolerance mechanisms of S. epidermidis cleanroom strains (SE11, SE18), with S. epidermidis SE11Ad adapted and S. epidermidis SE18To tolerant to DDAC. Adaptation to DDAC was identified with up-regulation of genes mainly involved in transport (thioredoxin reductase [pstS], the arsenic efflux pump [gene ID, SE0334], sugar phosphate antiporter [uhpT]), while down-regulation was seen for the Agr system (agrA, arC, agrD, psm, SE1543), for enhanced biofilm formation. Tolerance to DDAC revealed the up-regulation of genes associated with transporters (L-cysteine transport [tcyB]; uracil permease [SE0875]; multidrug transporter [lmrP]; arsenic efflux pump [arsB]); the down-regulation of genes involved in amino-acid biosynthesis (lysine [dapE]; histidine [hisA]; methionine [metC]), and an enzyme involved in peptidoglycan, and therefore cell wall modifications (alanine racemase [SE1079]). We show for the first time the differentially expressed genes in DDAC-adapted and DDAC-tolerant S. epidermidis strains, which highlight the complexity of the responses through the involvement of different mechanisms.


2014 ◽  
Vol 21 (9) ◽  
pp. 1206-1214 ◽  
Author(s):  
Lin Yan ◽  
Lei Zhang ◽  
Hongyan Ma ◽  
David Chiu ◽  
James D. Bryers

ABSTRACTNosocomial infections are the fourth leading cause of morbidity and mortality in the United States, resulting in 2 million infections and ∼100,000 deaths each year. More than 60% of these infections are associated with some type of biomedical device.Staphylococcus epidermidisis a commensal bacterium of the human skin and is the most common nosocomial pathogen infecting implanted medical devices, especially those in the cardiovasculature.S. epidermidisantibiotic resistance and biofilm formation on inert surfaces make these infections hard to treat. Accumulation-associated protein (Aap), a cell wall-anchored protein ofS. epidermidis, is considered one of the most important proteins involved in the formation ofS. epidermidisbiofilm. A small recombinant protein vaccine comprising a single B-repeat domain (Brpt1.0) ofS. epidermidisRP62A Aap was developed, and the vaccine's efficacy was evaluatedin vitrowith a biofilm inhibition assay andin vivoin a murine model of biomaterial-associated infection. A high IgG antibody response againstS. epidermidisRP62A was detected in the sera of the mice after two subcutaneous immunizations with Brpt1.0 coadministered with Freund's adjuvant. Sera from Brpt1.0-immunized mice inhibitedin vitroS. epidermidisRP62A biofilm formation in a dose-dependent pattern. After receiving two immunizations, each mouse was surgically implanted with a porous scaffold disk containing 5 × 106CFU ofS. epidermidisRP62A. Weight changes, inflammatory markers, and histological assay results after challenge withS. epidermidisindicated that the mice immunized with Brpt1.0 exhibited significantly higher resistance toS. epidermidisRP62A implant infection than the control mice. Day 8 postchallenge, there was a significantly lower number of bacteria in scaffold sections and surrounding tissues and a lower residual inflammatory response to the infected scaffold disks for the Brpt1.0-immunized mice than for of the ovalbumin (Ova)-immunized mice.


2016 ◽  
Vol 109 (10) ◽  
pp. 1403-1415
Author(s):  
Yongchang Yang ◽  
Xuemei Zhang ◽  
Wenfang Huang ◽  
Yibing Yin

2001 ◽  
Vol 69 (6) ◽  
pp. 4079-4085 ◽  
Author(s):  
Sarah E. Cramton ◽  
Martina Ulrich ◽  
Friedrich Götz ◽  
Gerd Döring

ABSTRACT Products of the intercellular adhesion (ica) operon in Staphylococcus aureus and Staphylococcus epidermidis synthesize a linear β-1,6-linked glucosaminylglycan. This extracellular polysaccharide mediates bacterial cell-cell adhesion and is required for biofilm formation, which is thought to increase the virulence of both pathogens in association with prosthetic biomedical implants. The environmental signal(s) that triggers ica gene product and polysaccharide expression is unknown. Here we demonstrate that anaerobic in vitro growth conditions lead to increased polysaccharide expression in both S. aureus and S. epidermidis, although the regulation is less stringent inS. epidermidis. Anaerobiosis also dramatically stimulates ica-specific mRNA expression inica- and polysaccharide-positive strains of both S. aureus and S. epidermidis.These data suggest a mechanism whereby ica gene expression and polysaccharide production may act as a virulence factor in an anaerobic environment in vivo.


2014 ◽  
Vol 109 (7) ◽  
pp. 871-878 ◽  
Author(s):  
Luiza Pinheiro ◽  
Carla Ivo Brito ◽  
Valéria Cataneli Pereira ◽  
Adilson de Oliveira ◽  
Carlos Henrique Camargo ◽  
...  

2015 ◽  
Vol 11 (3) ◽  
pp. e1004735 ◽  
Author(s):  
Rahel Decker ◽  
Christoph Burdelski ◽  
Melanie Zobiak ◽  
Henning Büttner ◽  
Gefion Franke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document