Long-term effects of contrasting tillage on soil organic carbon, nitrous oxide and ammonia emissions in a Mediterranean Vertisol under different crop sequences

2018 ◽  
Vol 619-620 ◽  
pp. 18-27 ◽  
Author(s):  
Giuseppe Badagliacca ◽  
Emilio Benítez ◽  
Gaetano Amato ◽  
Luigi Badalucco ◽  
Dario Giambalvo ◽  
...  
Geoderma ◽  
2014 ◽  
Vol 213 ◽  
pp. 379-384 ◽  
Author(s):  
Enke Liu ◽  
Saba Ghirmai Teclemariam ◽  
Changrong Yan ◽  
Jianmin Yu ◽  
Runsheng Gu ◽  
...  

2003 ◽  
Vol 32 (5) ◽  
pp. 1694-1700 ◽  
Author(s):  
Y. L. Qian ◽  
W. Bandaranayake ◽  
W. J. Parton ◽  
B. Mecham ◽  
M. A. Harivandi ◽  
...  

2020 ◽  
Vol 118 (2) ◽  
pp. 193-205
Author(s):  
E. Martínez ◽  
A. Maresma ◽  
A. Biau ◽  
P. Berenguer ◽  
S. Cela ◽  
...  

2012 ◽  
Vol 9 (1) ◽  
pp. 1055-1096 ◽  
Author(s):  
A. M. G. De Bruijn ◽  
P. Calanca ◽  
C. Ammann ◽  
J. Fuhrer

Abstract. We studied the impact of climate change on the dynamics of soil organic carbon (SOC) stocks in productive grassland systems undergoing two types of management, an intensive type with frequent harvests and fertilizer applications and an extensive system where fertilization is omitted and harvests are fewer. The Oensingen Grassland Model was explicitly developed for this study. It was calibrated using measurements taken in a recently established permanent sward in Central Switzerland, and run to simulate SOC dynamics over 2001–2100 under three climate change scenarios assuming different elements of IPCC A2 emission scenarios. We found that: (1) management intensity dominates SOC until approximately 20 yr after grassland establishment. Differences in SOC between climate scenarios become significant after 20 yr and climate effects dominate SOC dynamics from approximately 50 yr after establishment, (2) carbon supplied through manure contributes about 60% to measured organic C increase in fertilized grassland. (3) Soil C accumulates particularly in the top 10 cm soil until 5 yr after establishment. In the long-term, C accumulation takes place in the top 15 cm of the soil profile, while C content decreases below this depth. The transitional depth between gains and losses of C mainly depends on the vertical distribution of root senescence and root biomass. We discuss the importance of previous land use on carbon sequestration potentials that are much lower at the Oensingen site under ley-arable rotation and with much higher SOC stocks than most soils under arable crops. We further discuss the importance of biomass senescence rates, because C balance estimations indicate that these may differ considerably between the two management systems.


Sign in / Sign up

Export Citation Format

Share Document