scholarly journals Effects of Residue Returning on Soil Organic Carbon Storage and Sequestration Rate in China’s Croplands: A Meta-Analysis

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 691
Author(s):  
Xudong Wang ◽  
Cong He ◽  
Bingyang Liu ◽  
Xin Zhao ◽  
Yang Liu ◽  
...  

Crop residue returning (RR) is a promising option to increase soil organic carbon (SOC) storage, which is linked to crop yield promotion, ecologically sustainable agriculture, and climate change mitigation. Thus, the objectives of this study were to identify the responses of SOC storage and sequestration rates to RR in China’s croplands. Based on a national meta-analysis of 365 comparisons from 99 publications, the results indicated that RR increased SOC storage by 11.3% compared to residue removal (p < 0.05). Theoretically, when combined with low nitrogen fertilizer input rates (0–120 kg N ha−1), single cropping system, paddy-upland rotation, lower mean annual precipitation (0–500 mm), alkaline soils (pH 7.5–8.5), other methods of RR (including residue chopping, evenly incorporating, and burying) or long-term use (>10 yrs), an increase in SOC storage under RR by 11.6–15.5% could be obtained. The SOC sequestration rate of RR varied from 0.48 (Central China) to 1.61 (Southwest China) Mg C ha−1 yr−1, with a national average value of 0.93 Mg C ha−1 yr−1. Higher SOC sequestration rates enhanced crop production. However, decreases in SOC sequestration rate were observed with increases in experimental durations. The phenomenon of “C saturation” occurred after 23 yrs of RR. Overall, RR can be used as an efficient and environmentally friendly and climate-smart management practice for long-term use.

Geoderma ◽  
2014 ◽  
Vol 213 ◽  
pp. 379-384 ◽  
Author(s):  
Enke Liu ◽  
Saba Ghirmai Teclemariam ◽  
Changrong Yan ◽  
Jianmin Yu ◽  
Runsheng Gu ◽  
...  

2020 ◽  
Vol 12 (9) ◽  
pp. 3901 ◽  
Author(s):  
Amir Behzad Bazrgar ◽  
Aeryn Ng ◽  
Brent Coleman ◽  
Muhammad Waseem Ashiq ◽  
Andrew Gordon ◽  
...  

Enhancement of terrestrial carbon (C) sequestration on marginal lands in Canada using bioenergy crops has been proposed. However, factors influencing system-level C gain (SLCG) potentials of maturing bioenergy cropping systems, including belowground biomass C and soil organic carbon (SOC) accumulation, are not well documented. This study, therefore, quantified the long-term C sequestration potentials at the system-level in nine-year-old (2009–2018) woody (poplar clone 2293–29 (Populus spp.), hybrid willow clone SX-67 (Salix miyabeana)), and herbaceous (miscanthus (Miscanthus giganteus var. Nagara), switchgrass (Panicum virgatum)) bioenergy crop production systems on marginal lands in Southern Ontario, Canada. Results showed that woody cropping systems had significantly higher aboveground biomass C stock of 10.02 compared to 7.65 Mg C ha−1 in herbaceous cropping systems, although their belowground biomass C was not significantly different. Woody crops and switchgrass were able to increase SOC significantly over the tested period. However, when long term soil organic carbon (∆SOC) gains were compared, woody and herbaceous biomass crops gained 11.0 and 9.8 Mg C ha−1, respectively, which were not statistically different. Results also indicate a significantly higher total C pool [aboveground + belowground + soil organic carbon] in the willow (103 Mg ha−1) biomass system compared to other bioenergy crops. In the nine-year study period, woody crops had only 1.35 Mg C ha−1 more SLCG, suggesting that the influence of woody and herbaceous biomass crops on SLCG and ∆SOC sequestrations were similar. Further, among all tested biomass crops, willow had the highest annual SLCG of 1.66 Mg C ha−1 y−1.


2014 ◽  
Vol 10 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Abebe Shiferaw ◽  
Christian Hergarten ◽  
Tibebu Kassawmar ◽  
Gete Zeleke

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2474
Author(s):  
Arthur Gross ◽  
Tobias Bromm ◽  
Bruno Glaser

Biochar application to soil has the potential to sequester carbon in the long term because of its high stability and large-scale production potential. However, biochar technologies are still relatively new, and the global factors affecting the long-term fate of biochar in the environment are still poorly understood. To fill this important research gap, a global meta-analysis was conducted including 64 studies with 736 individual treatments. Field experiments covered experimental durations between 1 and 10 years with biochar application amounts between 1 and 100 Mg ha−1. They showed a mean increase in soil organic carbon (SOC) stocks by 13.0 Mg ha−1 on average, corresponding to 29%. Pot and incubation experiments ranged between 1 and 1278 days and biochar amounts between 5 g kg−1 and 200 g kg−1. They raised SOC by 6.3 g kg−1 on average, corresponding to 75%. More SOC was accumulated in long experimental durations of >500 days in pot and incubation experiments and 6–10 years in field experiments than in shorter experimental durations. Organic fertilizer co-applications significantly further increased SOC. Biochar from plant material showed higher C sequestration potential than biochar from fecal matter, due to higher C/N ratio. SOC increases after biochar application were higher in medium to fine grain textured soils than in soils with coarse grain sizes. Our study clearly demonstrated the high C sequestration potential of biochar application to agricultural soils of varying site and soil characteristics.


2019 ◽  
Vol 45 (1) ◽  
pp. 271 ◽  
Author(s):  
A. Novara ◽  
M. Pulido ◽  
J. Rodrigo-Comino ◽  
S. Di Prima ◽  
P. Smith ◽  
...  

It has been shown that soil management under organic farming can enhance soil organic carbon, thereby mitigating atmospheric greenhouse gas increases, but until now quantitative evaluations based on long term experiments are scarce, especially under Mediterranean conditions. Changes in soil organic carbon (SOC) content were examined in response to organic management with cover crops in a Mediterranean citrus plantation using 21 years of survey data. Soil organic carbon increase was more apparent 5 years after a land management change suggesting that, for citrus plantations on Mediterranean conditions, studies should be longer than five years in duration. Soil organic carbon sequestration rate did not significantly change during the 21 years of observation, with values ranging from -1.10 Mg C ha-1 y-1 to 1.89 Mg C ha-1 y-1. After 21 years, 61 Mg CO2 ha-1 were sequestered in long-lived soil C pools. These findings demonstrate that organic management is an effective strategy to restore or increase SOC content in Mediterranean citrus systems.


2008 ◽  
Vol 72 (5) ◽  
pp. 1486-1492 ◽  
Author(s):  
Y. Liang ◽  
H. T. Gollany ◽  
R. W. Rickman ◽  
S. L. Albrecht ◽  
R. F. Follett ◽  
...  

2009 ◽  
Vol 89 (4) ◽  
pp. 521-530 ◽  
Author(s):  
C D Baan ◽  
M C. J Grevers ◽  
J J Schoenau

A study was conducted to examine the effect of tillage on soil conditions and crop growth at three long-term (> 10 yr) no-till sites, one in each of the Brown, Black, and Gray soil zones of Saskatchewan. The four tillage treatments consisted of one cycle of tillage at three levels of intensity: spring cultivation only, fall + spring cultivation, and fall + spring + disc cultivation, all applied to no-till and also a no-till control. Total and particulate soil organic carbon, soil pH, and soil aggregation were not affected by the tillage operations. Tillage decreased the bulk density in the 5- to 10-cm soil depth, but did not affect soil water content (0-10 cm) or spring soil temperature (0-5 cm). Tillage decreased stratification of available phosphorus to some extent, but there appeared to be no associated effect on crop P uptake. Tillage did not effect crop production in any of the 3 yr following its imposition, except at one site where, in the first year, apparent tillage-induced nutrient immobilization resulted in lower yields. Overall, the imposition of one cycle of tillage on long-term no-till soils appears to have little effect on soil properties or crop growth.Key words: No-till, nutrient stratification, soil organic carbon, tillage


Sign in / Sign up

Export Citation Format

Share Document