Environmental drivers and stoichiometric constraints on enzyme activities in soils from rhizosphere to continental scale

Geoderma ◽  
2019 ◽  
Vol 337 ◽  
pp. 973-982 ◽  
Author(s):  
Svenja C. Stock ◽  
Moritz Köster ◽  
Michaela A. Dippold ◽  
Francisco Nájera ◽  
Francisco Matus ◽  
...  
2021 ◽  
Vol 66 (5) ◽  
pp. 949-967
Author(s):  
Andrew L. Labaj ◽  
Adam Jeziorski ◽  
Joshua Kurek ◽  
Joseph R. Bennett ◽  
Brian F. Cumming ◽  
...  

2020 ◽  
Vol 287 (1941) ◽  
pp. 20201798
Author(s):  
K. M. Fraser ◽  
J. S. Lefcheck ◽  
S. D. Ling ◽  
C. Mellin ◽  
R. D. Stuart-Smith ◽  
...  

Primary productivity of marine ecosystems is largely driven by broad gradients in environmental and ecological properties. By contrast, secondary productivity tends to be more variable, influenced by bottom-up (resource-driven) and top-down (predatory) processes, other environmental drivers, and mediation by the physical structure of habitats. Here, we use a continental-scale dataset on small mobile invertebrates (epifauna), common on surfaces in all marine ecosystems, to test influences of potential drivers of temperature-standardized secondary production across a large biogeographic range. We found epifaunal production to be remarkably consistent along a temperate to tropical Australian latitudinal gradient of 28.6°, spanning kelp forests to coral reefs (approx. 3500 km). Using a model selection procedure, epifaunal production was primarily related to biogenic habitat group, which explained up to 45% of total variability. Production was otherwise invariant to predictors capturing primary productivity, the local biomass of fishes (proxy for predation pressure), and environmental, geographical, and human impacts. Highly predictable levels of epifaunal productivity associated with distinct habitat groups across continental scales should allow accurate modelling of the contributions of these ubiquitous invertebrates to coastal food webs, thus improving understanding of likely changes to food web structure with ocean warming and other anthropogenic impacts on marine ecosystems.


2016 ◽  
Vol 371 (1703) ◽  
pp. 20150309 ◽  
Author(s):  
Sally Archibald ◽  
Gareth P. Hempson

Fire and herbivory are the two consumers of above-ground biomass globally. They have contrasting impacts as they differ in terms of selectivity and temporal occurrence. Here, we integrate continental-scale data on fire and herbivory in Africa to explore (i) how environmental drivers constrain these two consumers and (ii) the degree to which each consumer affects the other. Environments conducive to mammalian herbivory are not necessarily the same as those conducive to fire, although their spheres of influence do overlap—especially in grassy ecosystems which are known for their frequent fires and abundance of large mammalian herbivores. Interactions between fire and herbivory can be competitive, facultative or antagonistic, and we explore this with reference to the potential for alternative ecosystem states. Although fire removes orders of magnitude more biomass than herbivory their methane emissions are very similar, and in the past, herbivores probably emitted more methane than fire. We contrast the type of herbivory and fire in different ecosystems to define ‘consumer-realms’. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’.


2020 ◽  
Vol 375 (1810) ◽  
pp. 20190747 ◽  
Author(s):  
Zheng Fu ◽  
Philippe Ciais ◽  
Ana Bastos ◽  
Paul C. Stoy ◽  
Hui Yang ◽  
...  

In summer 2018, Europe experienced a record drought, but it remains unknown how the drought affected ecosystem carbon dynamics. Using observations from 34 eddy covariance sites in different biomes across Europe, we studied the sensitivity of gross primary productivity (GPP) to environmental drivers during the summer drought of 2018 versus the reference summer of 2016. We found a greater drought-induced decline of summer GPP in grasslands (−38%) than in forests (−10%), which coincided with reduced evapotranspiration and soil water content (SWC). As compared to the ‘normal year’ of 2016, GPP in different ecosystems exhibited more negative sensitivity to summer air temperature (Ta) but stronger positive sensitivity to SWC during summer drought in 2018, that is, a stronger reduction of GPP with soil moisture deficit. We found larger negative effects of Ta and vapour pressure deficit (VPD) but a lower positive effect of photosynthetic photon flux density on GPP in 2018 compared to 2016, which contributed to reduced summer GPP in 2018. Our results demonstrate that high temperature-induced increases in VPD and decreases in SWC aggravated drought impacts on GPP. This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale’.


2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Florian G. Weller ◽  
William S. Beatty ◽  
Elisabeth B. Webb ◽  
Dylan C. Kesler ◽  
David G. Krementz ◽  
...  

Abstract Background The timing of autumn migration in ducks is influenced by a range of environmental conditions that may elicit individual experiences and responses from individual birds, yet most studies have investigated relationships at the population level. We used data from individual satellite-tracked mallards (Anas platyrhynchos) to model the timing and environmental drivers of autumn migration movements at a continental scale. Methods We combined two sets of location records (2004–2007 and 2010–2011) from satellite-tracked mallards during autumn migration in the Mississippi Flyway, and identified records that indicated the start of long-range (≥ 30 km) southward movements during the migration period. We modeled selection of departure date by individual mallards using a discrete choice model accounting for heterogeneity in individual preferences. We developed candidate models to predict the departure date, conditional on daily mean environmental covariates (i.e. temperature, snow and ice cover, wind conditions, precipitation, cloud cover, and pressure) at a 32 × 32 km resolution. We ranked model performance with the Bayesian Information Criterion. Results Departure was best predicted (60% accuracy) by a “winter conditions” model containing temperature, and depth and duration of snow cover. Models conditional on wind speed, precipitation, pressure variation, and cloud cover received lower support. Number of days of snow cover, recently experienced snow cover (snow days) and current snow cover had the strongest positive effect on departure likelihood, followed by number of experienced days of freezing temperature (frost days) and current low temperature. Distributions of dominant drivers and of correct vs incorrect prediction along the movement tracks indicate that these responses applied throughout the latitudinal range of migration. Among recorded departures, most were driven by snow days (65%) followed by current temperature (30%). Conclusions Our results indicate that among the tested environmental parameters, the dominant environmental driver of departure decision in autumn-migrating mallards was the onset of snow conditions, and secondarily the onset of temperatures close to, or below, the freezing point. Mallards are likely to relocate southwards quickly when faced with snowy conditions, and could use declining temperatures as a more graduated early cue for departure. Our findings provide further insights into the functional response of mallards to weather factors during the migration period that ultimately determine seasonal distributions.


Author(s):  
Takuma Saito ◽  
Toshihiro Takizawa

Cells and tissues live on a number of dynamic metabolic pathways, which are made up of sequential enzymatic cascades.Recent biochemical and physiological studies of vision research showed the importance of cGMP metabolism in the rod outer segment of visual cell, indicat ing that the photon activated rhodopsin exerts activation effect on the GTP binding protein, transducin, and this act ivated transducin further activates phosphodiesterase (PDEase) to result in a rapid drop in cGMP concentration in the cytoplasm of rod outer segment. This rapid drop of cGMP concentration exerts to close the ion channel on the plasma membrane and to stop of inward current brings hyperpolarization and evokes an action potential.These sequential change of enzyme activities, known as cGMP cascade, proceeds quite rapidly within msec order. Such a rapid change of enzyme activities, such as PDEase in rod outer segment, was not a matter of conventional histochemical invest igations.


2006 ◽  
Vol 76 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Yukari Egashira ◽  
Shin Nagaki ◽  
Hiroo Sanada

We investigated the change of tryptophan-niacin metabolism in rats with puromycin aminonucleoside PAN-induced nephrosis, the mechanisms responsible for their change of urinary excretion of nicotinamide and its metabolites, and the role of the kidney in tryptophan-niacin conversion. PAN-treated rats were intraperitoneally injected once with a 1.0% (w/v) solution of PAN at a dose of 100 mg/kg body weight. The collection of 24-hour urine was conducted 8 days after PAN injection. Daily urinary excretion of nicotinamide and its metabolites, liver and blood NAD, and key enzyme activities of tryptophan-niacin metabolism were determined. In PAN-treated rats, the sum of urinary excretion of nicotinamide and its metabolites was significantly lower compared with controls. The kidneyα-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) activity in the PAN-treated group was significantly decreased by 50%, compared with the control group. Although kidney ACMSD activity was reduced, the conversion of tryptophan to niacin tended to be lower in the PAN-treated rats. A decrease in urinary excretion of niacin and the conversion of tryptophan to niacin in nephrotic rats may contribute to a low level of blood tryptophan. The role of kidney ACMSD activity may be minimal concerning tryptophan-niacin conversion under this experimental condition.


Sign in / Sign up

Export Citation Format

Share Document