Long-term effects of conventional tillage and no-tillage on saturated and near-saturated hydraulic conductivity – Can their prediction be improved by pore metrics obtained with X-ray CT?

Geoderma ◽  
2020 ◽  
Vol 361 ◽  
pp. 114082 ◽  
Author(s):  
Steffen Schlüter ◽  
Lukas Albrecht ◽  
Kai Schwärzel ◽  
Janis Kreiselmeier
Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 484 ◽  
Author(s):  
Mirko Castellini ◽  
Francesco Fornaro ◽  
Pasquale Garofalo ◽  
Luisa Giglio ◽  
Michele Rinaldi ◽  
...  

The conversion from conventional tillage (CT) to no-tillage (NT) of the soil is often suggested for positive long-term effects on several physical and hydraulic soil properties. In fact, although shortly after the conversion a worsening of the soil may occur, this transition should evolve in a progressive improvement of soil properties. Therefore, investigations aiming at evaluating the effects of NT on porous media are advisable, since such information may be relevant to better address the farmers’ choices to this specific soil conservation management strategy. In this investigation, innovative and standard methods were applied to compare CT and NT on two farms where the conversion took place 6 or 24 years ago, respectively. Regardless of the investigated farm, results showed negligible differences in cumulative infiltration or infiltration rate, soil sorptivity, saturated hydraulic conductivity, conductive pores size, or hydraulic conductivity functions. Since relatively small discrepancies were also highlighted in terms of bulk density or soil organic carbon, it was possible to conclude that NT did not have a negative impact on the main physical and hydraulic properties of investigated clay soils. However, a significantly higher number of small pores was detected under long-term NT compared to CT, so we concluded that the former soil was a more conductive pore system, i.e., consisting of numerous relatively smaller pores but continuous and better interconnected. Based on measured capacity-based indicators (macroporosity, air capacity, relative field capacity, plant available water capacity), NT always showed a more appropriate proportion of water and air in the soil.


2021 ◽  
Author(s):  
Márton Dencső ◽  
Ágota Horel ◽  
Zsófia Bakacsi ◽  
Eszter Tóth

<p>Tillage practices influence soil CO<sub>2</sub> emissions, hence many research investigate the long-term effects of conservation and conventional tillage methods e.g. ploughing and no-tillage on soil greenhouse gas emission.</p><p>The experiment site is an 18-years-old long-term tillage trial established on chernozem soil. During 2020, we took weekly CO<sub>2 </sub>emission measurements in the mouldboard ploughing (MP), no-tillage (NT), and shallow cultivation (SC) treatments Tillage depth was 26-30 cm, 12-16 cm and 0 cm in the cases of MP, SC and NT respectively. The experiment was under wither oat cultivation.</p><p>We investigated the similarity in the CO<sub>2</sub> emission trends of SC to MP or NT treatments. Besides CO<sub>2</sub> emission measurements, we also monitored environmental parameters such as soil temperature (Ts) and soil water content (SWC) in each treatment.</p><p>During the investigated year (2020 January - December) SC had higher annual mean CO<sub>2</sub> emission (0.115±0.083 mg m<sup>-2</sup> s<sup>-1</sup>) compared to MP (0.099±0.089 mg m<sup>-2</sup> s<sup>-1</sup>) and lower compared to NT (0.119±0.100 mg m<sup>-2</sup> s<sup>-1</sup>). The difference of the CO<sub>2</sub> emissions was significant between SC and MP (p<0.05); however, it was not significant between SC and NT (p>0.05) treatments. The Ts dependency of CO<sub>2</sub> emission was moderate in all treatments. CO<sub>2</sub> emissions were moderately depended on SWC in MP and SC, and there was no correlation between these parameters in NT.</p><p>The annual mean CO<sub>2</sub> emission of the SC treatment was more similar to the NT, than to the MP treatment.</p>


2011 ◽  
Vol 57 (No. 4) ◽  
pp. 186-192 ◽  
Author(s):  
Ž. Videnović ◽  
M. Simić ◽  
J. Srdić ◽  
Z. Dumanović

The effects of three tillage systems: no-tillage (NT), reduced tillage (RT) and conventional tillage (CT), and three levels of fertilization (0, 258 and 516 kg/ha NPK (58:18:24)), on the maize yield during ten years (1999–2008) were analyzed on the chernozem soil type in Zemun Polje, Serbia. Statistical analyses showed significant effects of all three factors i.e., year, soil tillage and amount of fertilizers, and their interactions on the maize yield. The ten-year averages showed that the highest yields were observed with CT (10.61 t/ha), while the averages with RT and NT were lower (8.99 t/ha and 6.85 t/ha, respectively). The results of the influence of the amount of the applied fertilizers on maize yield showed that the lowest yield was in the zero level of fertilization 7.71 t/ha, while the yield was raised when the 258 kg/ha and 516 kg/ha NPK were applied (9.18 t/ha and 9.56 t/ha, respectively). Analyzing the influence of the soil tillage systems on maize production with respect to the amounts of applied fertilizers, this research revealed the benefits of CT under the presented agroecological conditions, irrespective of the level of applied fertilizer.


2002 ◽  
Vol 46 (6-7) ◽  
pp. 183-190 ◽  
Author(s):  
C.S. Tan ◽  
C.F. Drury ◽  
W.D. Reynolds ◽  
J.D. Gaynor ◽  
T.Q. Zhang ◽  
...  

No-tillage (NT) is becoming increasingly attractive to farmers because it clearly reduces soil erosion and production costs relative to conventional tillage (CT). However, the impacts of no-tillage on the quantity and quality of tile drainage water are less well known. Accordingly, two adjacent field scale on-farm CT and NT sites were established to compare the impacts of the two tillage systems on tile drainage and NO3-N loss in tile drainage water. The effect of the two tillage systems on soil structure, hydraulic conductivity, and earthworm population were also investigated. The total NO3-N loss in tile drainage water over the 5-yr period (1995-1999) was 82.3 kg N ha−1 for the long-term NT site and 63.7 kg N ha−1 for the long-term CT site. The long-term NT site had 48% more tile drainage (6,975 kL ha−1) than the long-term CT site (4,716 kL ha−1). The average flow weighted mean (FWM) NO3-N concentration in tile drainage water over the 5-yr period was 11.8 mg N L−1 for the NT site and 13.5 mg N L−1 for the CT site. For both tillage systems, approximately 80% of tile drainage and NO3-N loss in tile drainage water occurred during the November to April non-growing season. Long-term NT improved wet aggregate stability, increased near-surface hydraulic conductivity and increased both the number and mass of earthworms relative to long-term CT. The greater tile drainage and NO3-N loss under NT were attributed to an increase in continuous soil macropores, as implied by greater hydraulic conductivity and greater numbers of earthworms.


2016 ◽  
Vol 9 (3) ◽  
pp. 778
Author(s):  
Viviane Capoane ◽  
Ivan Renato Cardoso Krolow ◽  
Danilo Rheinheimer dos Santos ◽  
Lutécia Beatriz Canalli

Neste trabalho, determinaram-se os teores totais das substâncias químicas presentes em um Latossolo Vermelho aluminoférrico utilizando a técnica de espectroscopia total de fluorescência de raios-X. A pesquisa teve como objetivo criar uma base de dados geoquímica para os solos da região sudoeste do Paraná; comparar os resultados com valores de referência nacional e internacional; avaliar o efeito dos sistemas plantio direto versus convencional de cultivo e; de plantas de cobertura de inverno, na geoquímica do solo de um experimento de longa duração. As coletas de solo se deram em três locais distintos, em três camadas (0-10, 10-20 e 20-40 cm). A técnica utilizada forneceu de maneira rápida e limpa a impressão digital química do solo e os mesmos servem de background para o sudoeste do Paraná. Os teores de elementos químicos preconizados por organizações nacionais e internacionais não estão alinhados com os teores observados em áreas não antropizadas do estado do Paraná. Os resultados obtidos também mostraram que 29 anos após a implantação do experimento, a fertilidade natural foi alterada e que, a substituição da vegetação nativa por sistemas cultivados levou a exportação de algumas substâncias químicas do solo como SO3, MnO, Co e, ao acúmulo de outras como CaO, K2O e MgO. No sistema plantio direto (0-10 cm) concentraram-se os maiores teores de substâncias de origem antropogênica. O sistema convencional de cultivo apresentou diferenciação significativa nos teores entre as plantas de cobertura e não significativa entre as camadas de solo.   A B S T R A C T In this work, the total chemical element levels in a Rhodic Hapludox were determined using total  X-ray fluorescence spectroscopy. The research aimed to create a geochemical database of soils in the southwestern region of Paraná; compare the values obtained with national and international reference values; evaluate the effect of no-tillage versus conventional tillage systems and; coverage plants on the soil geochemistry in a long term experiment. Soil collections were made in three different locations, each in three layers (0-10, 10-20 and 20-40 cm). The technique gave a quick, clean chemical digital impression of the soil which also can be used as a background for the southwestern Paraná. The levels of chemicals recommended by national and international organizations are not aligned with the levels observed in non-disturbed areas of Paraná State. The results also showed that twenty nine years after the beginning of the experiment, the natural fertility changed and that, with the substitution of native vegetation for cultivation systems, levels of some components such as SO3, MnO and Co decreased and those of others such as CaO, K2O and MgO increased. In soils for which no-tillage systems (0-10 cm) is the largest concentrations of anthropogenic substances. The conventional tillage systems gave levels very different from those found in soils under coverage plants and not significantly different between the soil layers. Keywords: soil management, cover crops, no tillage, conventional tillage, geochemistry.   


2019 ◽  
Vol 95 ◽  
pp. 103135 ◽  
Author(s):  
Eduardo Vazquez ◽  
Marta Benito ◽  
Alberto Masaguer ◽  
Rafael Espejo ◽  
Eugenio Díaz-Pinés ◽  
...  

2015 ◽  
Vol 39 (2) ◽  
pp. 408-415 ◽  
Author(s):  
Carlos Germán Soracco ◽  
Luis Alberto Lozano ◽  
Rafael Villarreal ◽  
Telmo Cecilio Palancar ◽  
Daniel Jorajuria Collazo ◽  
...  

Soil compaction has been recognized as a severe problem in mechanized agriculture and has an influence on many soil properties and processes. Yet, there are few studies on the long-term effects of soil compaction, and the development of soil compaction has been shown through a limited number of soil parameters. The objectives of this study were to evaluate the persistence of soil compaction effects (three traffic treatments: T0, without traffic; T3, three tractor passes; and T5, five tractor passes) on pore system configuration, through static and dynamic determinations; and to determine changes in soil pore orientation due to soil compaction through measurement of hydraulic conductivity of saturated soil in samples taken vertically and horizontally. Traffic led to persistent changes in all the dynamic indicators studied (saturated hydraulic conductivity, K0; effective macro- and mesoporosity, εma and εme), with significantly lower values of K0, εma, and εme in the T5 treatment. The static indicators of bulk density (BD), derived total porosity (TP), and total macroporosity (θma) did not vary significantly among the treatments. This means that machine traffic did not produce persistent changes on these variables after two years. However, the orientation of the soil pore system was modified by traffic. Even in T0, there were greater changes in K0 measured in the samples taken vertically than horizontally, which was more related to the presence of vertical biopores, and to isotropy of K0 in the treatments with machine traffic. Overall, the results showed that dynamic indicators are more sensitive to the effects of compaction and that, in the future, static indicators should not be used as compaction indicators without being complemented by dynamic indicators.


Weed Science ◽  
1991 ◽  
Vol 39 (2) ◽  
pp. 186-194 ◽  
Author(s):  
John Cardina ◽  
Emilie Regnier ◽  
Kent Harrison

Soils from long-term tillage plots at three locations in Ohio were sampled to determine composition and size of weed seed banks following 25 yr of continuous no-tillage, minimum-tillage, or conventional-tillage corn production. The same herbicide was applied across tillage treatments within each year and an untreated permanent grass sod was sampled for comparison. Seed numbers to a 15-cm depth were highest in the no-tillage treatment in the Crosby silt loam (77 800 m–2) and Wooster silt loam (8400 m–2) soils and in the grass sod (7400 m–2) in a Hoytville silty clay loam soil. Lowest seed numbers were found in conventional-tillage plots in the Wooster soil (400 m–2) and in minimum-tillage plots in the Crosby (2200 m–2) and Hoytville (400 m–2) soils. Concentration of seeds decreased with depth but the effect of tillage on seed depth was not consistent among soil types. Number of weed species was highest in permanent grass sod (10 to 18) and decreased as soil disturbance increased; weed populations were lowest in conventional tillage in the Hoytville soil. Common lambsquarters, pigweeds, and fall panicum were the most commonly found seeds in all soils. Diversity indices indicated that increased soil disturbance resulted in a decrease in species diversity. Weed populations the summer following soil sampling included common lambsquarters, pigweeds, fall panicum, and several species not detected in the seed bank.


2013 ◽  
Vol 804 ◽  
pp. 79-84
Author(s):  
Fei Lu ◽  
Zhao Qian Xie ◽  
Yu Feng Lu ◽  
Miao Lou ◽  
Meng Zhou ◽  
...  

In order to improve the organization, reduce the porosity, compact the structure and enhance the corrosion resistance of the coating, Zn-Al-Mg-RE coating system was prepared by high velocity arc spraying. The surface appears, phase composition and electrochemical properties of the coating were characterized by scanning electron microscope, X-ray radiation diffaction and electrochemical workstation. The results indicated that the coatings were compact. The coatings were mainly zinc and aluminum phase. In corrosion of immersion, the reaction resistance and coating resistance of coatings quickly become bigger, the surface of coatings become more compact, and the corrosion reaction is more difficult. Electrochemical tests showed that the coating had excellent corrosion resistance. The electrochemical protection and self-sealing effect of coatings can have long-term effects on anticorrosion.


Sign in / Sign up

Export Citation Format

Share Document