Concomitant tracking of NH3, N2O and soil mineral-N using steady-state incubation cells to enhance sustainability of urea fertilization approaches

Geoderma ◽  
2021 ◽  
Vol 404 ◽  
pp. 115305
Author(s):  
Oz Kira ◽  
Avi Shaviv ◽  
Yael Dubowski
2011 ◽  
Vol 8 (8) ◽  
pp. 2341-2350 ◽  
Author(s):  
L. Song ◽  
X. Bao ◽  
X. Liu ◽  
Y. Zhang ◽  
P. Christie ◽  
...  

Abstract. Chinese grasslands are extensive natural ecosystems that comprise 40 % of the total land area of the country and are sensitive to N deposition. A field experiment with six N rates (0, 30, 60, 120, 240, and 480 kg N ha−1 yr−1) was conducted at Duolun, Inner Mongolia, during 2005 and 2010 to identify some effects of N addition on a temperate steppe ecosystem. The dominant plant species in the plots were divided into two categories, grasses and forbs, on the basis of species life forms. Enhanced N deposition, even as little as 30 kg N ha−1 yr−1 above ambient N deposition (16 kg N ha−1 yr−1), led to a decline in species richness. The cover of grasses increased with N addition rate but their species richness showed a weak change across N treatments. Both species richness and cover of forbs declined strongly with increasing N deposition as shown by linear regression analysis (p < 0.05). Increasing N deposition elevated aboveground production of grasses but lowered aboveground biomass of forbs. Plant N concentration, plant δ15N and soil mineral N increased with N addition, showing positive relationships between plant δ15N and N concentration, soil mineral N and/or applied N rate. The cessation of N application in the 480 kg N ha−1 yr−1 treatment in 2009 and 2010 led to a slight recovery of the forb species richness relative to total cover and aboveground biomass, coinciding with reduced plant N concentration and soil mineral N. The results show N deposition-induced changes in soil N transformations and plant N assimilation that are closely related to changes in species composition and biomass accumulation in this temperate steppe ecosystem.


2021 ◽  
Author(s):  
Jie Luo ◽  
Lukas Beule ◽  
Guodong Shao ◽  
Edzo Veldkamp ◽  
Marife D. Corre

&lt;p&gt;Monoculture croplands are considered as major sources of the greenhouse gas, nitrous oxide (N&lt;sub&gt;2&lt;/sub&gt;O). The conversion of monoculture croplands to agroforestry systems, e.g., integrating trees within croplands, is an essential climate-smart management system through extra C sequestration and can potentially mitigate N&lt;sub&gt;2&lt;/sub&gt;O emissions. So far, no study has systematically compared gross rates of N&lt;sub&gt;2&lt;/sub&gt;O emission and uptake between cropland agroforestry and monoculture. In this study, we used an in-situ &lt;sup&gt;15&lt;/sup&gt;N&lt;sub&gt;2&lt;/sub&gt;O pool dilution technique to simultaneously measure gross N&lt;sub&gt;2&lt;/sub&gt;O emission and uptake over two consecutive growing seasons (2018 - 2019) at three sites in Germany: two sites were on Phaeozem and Cambisol soils with each site having a pair of cropland agroforestry and monoculture systems, and an additional site with only monoculture on an Arenosol soil prone to high nitrate leaching. Our results showed that cropland agroforestry had lower gross N&lt;sub&gt;2&lt;/sub&gt;O emissions and higher gross N&lt;sub&gt;2&lt;/sub&gt;O uptake than in monoculture at the site with Phaeozem soil (P &amp;#8804; 0.018 &amp;#8211; 0.025) and did not differ in gross N&lt;sub&gt;2&lt;/sub&gt;O emissions and uptake with cropland monoculture at the site with Cambisol soil (P &amp;#8805; 0.36). Gross N&lt;sub&gt;2&lt;/sub&gt;O emissions were positively correlated with soil mineral N and heterotrophic respiration which, in turn, were correlated with soil temperature, and with water-filled pore space (WFPS) (r = 0.24 &amp;#8210; 0.54, P &lt; 0.01). Gross N&lt;sub&gt;2&lt;/sub&gt;O emissions were also negatively correlated with nosZ clade I gene abundance (involved in N&lt;sub&gt;2&lt;/sub&gt;O-to-N&lt;sub&gt;2&lt;/sub&gt; reduction, r = -0.20, P &lt; 0.05). These findings showed that across sites and management systems changes in gross N&lt;sub&gt;2&lt;/sub&gt;O emissions were driven by changes in substrate availability and aeration condition (i.e., soil mineral N, C availability, and WFPS), which also influenced denitrification gene abundance. The strong regression values between gross N&lt;sub&gt;2&lt;/sub&gt;O emissions and net N&lt;sub&gt;2&lt;/sub&gt;O emissions (R&lt;sup&gt;2 &lt;/sup&gt;&amp;#8805; 0.96, P &lt; 0.001) indicated that gross N&lt;sub&gt;2&lt;/sub&gt;O emissions largely drove net soil N&lt;sub&gt;2&lt;/sub&gt;O emissions. Across sites and management systems, annual soil gross N&lt;sub&gt;2&lt;/sub&gt;O emissions and uptake were controlled by clay contents which, in turn, correlated with indices of soil fertility (i.e., effective cation exchange capacity, total N, and C/N ratio) (Spearman rank&amp;#8217;s rho = -0.76 &amp;#8211; 0.86, P &amp;#8804; 0.05). The lower gross N&lt;sub&gt;2&lt;/sub&gt;O emissions from the agroforestry tree rows at two sites indicated the potential of agroforestry in reducing soil N&lt;sub&gt;2&lt;/sub&gt;O emissions, supporting the need for temperate cropland agroforestry to be considered in greenhouse gas mitigation policies.&lt;/p&gt;


2019 ◽  
Vol 56 (2) ◽  
pp. 239-254 ◽  
Author(s):  
Tanka P. Kandel ◽  
Prasanna H. Gowda ◽  
Brian K. Northup ◽  
Alexandre C. Rocateli

AbstractThe aim of this study was to compare the effects of cowpea green manure and inorganic nitrogen (N) fertilizers on yields of winter wheat and soil emissions of nitrous oxide (N2O). The comparisons included cowpea grown solely as green manure where all biomass was terminated at maturity by tillage, summer fallow treatments with 90 kg N ha−1 as urea (90-N), and no fertilization (control) at planting of winter wheat. Fluxes of N2O were measured by closed chamber methods after soil incorporation of cowpea in autumn (October–November) and harvesting of winter wheat in summer (June–August). Growth and yields of winter wheat and N concentrations in grain and straw were also measured. Cowpea produced 9.5 Mg ha−1 shoot biomass with 253 kg N ha−1 at termination. Although soil moisture was favorable for denitrification after soil incorporation of cowpea biomass, low concentrations of soil mineral N restricted emissions of N2O from cowpea treatment. However, increased concentrations of soil mineral N and large rainfall-induced emissions were recorded from the cowpea treatment during summer. Growth of winter wheat, yield, and grain N concentrations were lowest in response to cowpea treatment and highest in 90-N treatment. In conclusion, late terminated cowpea may reduce yield of winter wheat and increase emissions of N2O outside of wheat growing seasons due to poor synchronization of N mineralization from cowpea biomass with N-demand of winter wheat.


2017 ◽  
Vol 34 (2) ◽  
pp. 144-154 ◽  
Author(s):  
Adria L. Fernandez ◽  
Karina P. Fabrizzi ◽  
Nicole E. Tautges ◽  
John A. Lamb ◽  
Craig C. Sheaffer

AbstractAlfalfa is recommended as a rotational crop in corn production, due to its ability to contribute to soil nitrogen (N) and carbon (C) stocks through atmospheric N2fixation and above- and belowground biomass production. However, there is little information on how alfalfa management practices affect contributions to soil and subsequent corn crop yields, and research has not been targeted to organic systems. A study was conducted to determine the effects of alfalfa stand age, cutting frequency and biomass removal on soil C and N status and corn yields at three organically managed Minnesota locations. In one experiment, five cutting treatments were applied in nine environments: two, three and four cuts with biomass removal; three cuts with biomass remaining in place; and a no-cut control. In the other experiment, corn was planted following 1-, 2-, 3- or 4-year-old alfalfa stands and a no-alfalfa control. Yield was measured in the subsequent corn crop. In the cutting experiment, the two- and three-cut treatments with biomass removal reduced soil mineral N by 12.6 and 11.5%, respectively, compared with the control. Potentially mineralizable N (PMN) was not generally affected by cutting treatments. The three-cut no-removal increased potentially mineralizable C by 17% compared with the other treatments, but lowered soil total C in two environments, suggesting a priming effect in which addition of alfalfa biomass stimulated microbial mineralization of native soil C. Although both yields and soil mineral N tended to be higher in treatments where biomass remained in place, this advantage was small and inconsistent, indicating that farmers need not forgo hay harvest to obtain the rotational benefits of an alfalfa stand. The lack of overall correlation between corn grain yields and mineral and potentially mineralizable N suggests that alfalfa N contribution was not the driver of the yield increase in the no-removal treatments. Alfalfa stand age had inconsistent effects on fall-incorporated N and soil N and C parameters. Beyond the first year, increased alfalfa stand age did not increase soil mineral N or PMN. However, corn yield increased following older stands. Yields were 29, 77 and 90% higher following first-, second- and third-year alfalfa stands than the no-alfalfa control, respectively. This indicates that alfalfa may benefit succeeding corn through mechanisms other than N contribution, potentially including P solubilization and weed suppression. These effects have been less studied than N credits, but are of high value in organic cropping systems.


1987 ◽  
Vol 109 (1) ◽  
pp. 141-157 ◽  
Author(s):  
T. M. Addiscott ◽  
A. P. Whitmore

summaryThe computer model described simulates changes in soil mineral nitrogen and crop uptake of nitrogen by computing on a daily basis the amounts of N leached, mineralized, nitrified and taken up by the crop. Denitrification is not included at present. The leaching submodel divides the soil into layers, each of which contains mobile and immobile water. It needs points from the soil moisture characteristic, measured directly or derived from soil survey data; it also needs daily rainfall and evaporation. The mineralization and nitrification submodel assumes pseudo-zero order kinetics and depends on the net mineralization rate in the topsoil and the daily soil temperature and moisture content, the latter being computed in the leaching submodel. The crop N uptake and dry-matter production submodel is a simple function driven by degree days of soil temperature and needs in addition only the sowing date and the date the soil returns to field capacity, the latter again being computed in the leaching submodel. A sensitivity analysis was made, showing the effects of 30% changes in the input variables on the simulated amounts of soil mineral N and crop N present in spring when decisions on N fertilizer rates have to be made. Soil mineral N was influenced most by changes in rainfall, soil water content, mineralization rate and soil temperature, whilst crop N was affected most by changes in soil temperature, rainfall and sowing date. The model has so far been applied only to winter wheat growing through autumn, winter and spring but it should be adaptable to other crops and to a full season.The model was validated by comparing its simulations with measurements of soil mineral N, dry matter and the amounts of N taken up by winter wheat in experiments made at seven sites during 5 years. The simulations were assessed graphically and with the aid of several statistical summaries of the goodness of fit. The agreement was generally very good; over all years 72% of all simulations of soil mineral N to 90 cm depth were within 20 kg N/ha of the soil measurements; also 78% of the simulations of crop nitrogen uptake were within 15 kg N/ha and 63% of the simulated yields of dry matter were within 25 g/m2 of the amounts measured. All correlation coefficients were large, positive, and highly significant, and on average no statistically significant differences were found between simulation and measurement either for soil mineral N or for crop N uptake.


2020 ◽  
Vol 17 (4) ◽  
pp. 1181-1198 ◽  
Author(s):  
Pauline Sophie Rummel ◽  
Birgit Pfeiffer ◽  
Johanna Pausch ◽  
Reinhard Well ◽  
Dominik Schneider ◽  
...  

Abstract. Chemical composition of root and shoot litter controls decomposition and, subsequently, C availability for biological nitrogen transformation processes in soils. While aboveground plant residues have been proven to increase N2O emissions, studies on root litter effects are scarce. This study aimed (1) to evaluate how fresh maize root litter affects N2O emissions compared to fresh maize shoot litter, (2) to assess whether N2O emissions are related to the interaction of C and N mineralization from soil and litter, and (3) to analyze changes in soil microbial community structures related to litter input and N2O emissions. To obtain root and shoot litter, maize plants (Zea mays L.) were cultivated with two N fertilizer levels in a greenhouse and harvested. A two-factorial 22 d laboratory incubation experiment was set up with soil from both N levels (N1, N2) and three litter addition treatments (control, root, root + shoot). We measured CO2 and N2O fluxes, analyzed soil mineral N and water-extractable organic C (WEOC) concentrations, and determined quality parameters of maize litter. Bacterial community structures were analyzed using 16S rRNA gene sequencing. Maize litter quality controlled NO3- and WEOC availability and decomposition-related CO2 emissions. Emissions induced by maize root litter remained low, while high bioavailability of maize shoot litter strongly increased CO2 and N2O emissions when both root and shoot litter were added. We identified a strong positive correlation between cumulative CO2 and N2O emissions, supporting our hypothesis that litter quality affects denitrification by creating plant-litter-associated anaerobic microsites. The interdependency of C and N availability was validated by analyses of regression. Moreover, there was a strong positive interaction between soil NO3- and WEOC concentration resulting in much higher N2O emissions, when both NO3- and WEOC were available. A significant correlation was observed between total CO2 and N2O emissions, the soil bacterial community composition, and the litter level, showing a clear separation of root + shoot samples of all remaining samples. Bacterial diversity decreased with higher N level and higher input of easily available C. Altogether, changes in bacterial community structure reflected degradability of maize litter with easily degradable C from maize shoot litter favoring fast-growing C-cycling and N-reducing bacteria of the phyla Actinobacteria, Chloroflexi, Firmicutes, and Proteobacteria. In conclusion, litter quality is a major driver of N2O and CO2 emissions from crop residues, especially when soil mineral N is limited.


1999 ◽  
Vol 133 (3) ◽  
pp. 263-274 ◽  
Author(s):  
J. VOS

In four field experiments, the effects of single nitrogen (N) applications at planting on yield and nitrogen uptake of potato (Solanum tuberosum L.) was compared with two or three split applications. The total amount of N applied was an experimental factor in three of the experiments. In two experiments, sequential observations were made during the growing season. Generally, splitting applications (up to 58 days after emergence) did not affect dry matter (DM) yield at maturity and tended to result in slightly lower DM concentration of tubers, whereas it slightly improved the utilization of nitrogen. Maximum haulm dry weight and N content were lower when less nitrogen was applied during the first 50 days after emergence (DAE). The crops absorbed little extra nitrogen after 60 DAE (except when three applications were given). Soil mineral N (0–60 cm) during the first month reflected the pattern of N application with values up to 27 g/m2 N. After 60 DAE, soil mineral N was always around 2–5 g/m2. The efficiency of N utilization, i.e. the ratio of the N content of the crop to total N available (initial soil mineral N+deposition+net mineralization) was 0·45 for unfertilized controls. The utilization of fertilizer N (i.e. the apparent N recovery) was generally somewhat improved by split applications, but declined with the total amount of N applied (range 0·48–0·72). N utilization and its complement, possible N loss, were similar for both experiments with sequential observations. Separate analysis of the movement of Br− indicated that some nitrate can be washed below 60 cm soil depth due to dispersion during rainfall. The current study showed that the time when N application can be adjusted to meet estimated requirements extends to (at least) 60 days after emergence. That period of time can be exploited to match the N application to the actual crop requirement as it changes during that period.


2016 ◽  
Vol 75 ◽  
pp. 62-69 ◽  
Author(s):  
Saïdou Nourou Sall ◽  
Dominique Masse ◽  
Ndèye Hélène Diallo ◽  
Thierno M.B. Sow ◽  
Edmond Hien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document