Soil available P, soil organic carbon and aggregation as affected by long-term poultry manure application to Andisols under pastures in Southern Chile

2020 ◽  
Vol 21 ◽  
pp. e00271
Author(s):  
Patricia Poblete-Grant ◽  
Jonathan Suazo-Hernández ◽  
Leo Condron ◽  
Cornelia Rumpel ◽  
Rolando Demanet ◽  
...  
2021 ◽  
Author(s):  
Francis Durnin-Vermette ◽  
Paul Voroney ◽  
Adam Gillespie

<p>Carbon sequestration reduces GHG emissions while improving soil fertility. In order for carbon sequestration through agriculture to be viable, however, accurate estimations of sequestration values are crucial in order to guide policy-making. Currently, Ontario’s provincial Ministry of Agriculture, Food and Rural Affairs (OMAFRA) uses sequestration values from the federal government’s farm-level greenhouse gas emission model (Holos), however these estimates fall short in one respect: a 2018 analysis demonstrated that manure application is not completely considered in the government’s estimates, which is a critical gap.</p> <p>The main purposes of our study were 1) to assess the accuracy of soil organic carbon estimations of process-based soil carbon models (Century and RothC) which were calibrated with data from long-term manure addition experiments in Ontario, and 2) to modify these models such that they were able to fully take manure application into account when estimating carbon sequestration in Ontario’s croplands, and determine whether this substantially increases model accuracy.</p> <p>The models’ estimations for soil organic carbon sequestration were respectively calibrated and validated using data from two long-term manure addition experiments in Ottawa and Harrow. By calibrating multiple models using multiple datasets, model-specific and site-specific biases were minimized. The statistical analyses consisted of a suite of tests that assess the modelling accuracy compared to baseline measured data: the coefficient of determination (R2), root mean square error (RMSE), average relative error (ARE), and the Nash-Sutcliffe efficiency statistic (NSE).</p> <p>As a result of these improved provincial estimates, Canadians will be better-informed about the greenhouse gas mitigation potential of long-term manure addition to croplands, which will help guide decisions made by policymakers as well as farmers. These improved provincial estimates will also be reported to Canada’s national greenhouse gas inventory, and will be ultimately disclosed to the UN’s Intergovernmental Panel on Climate Change (IPCC) in their global GHG summary report.</p>


2020 ◽  
Vol 31 (11) ◽  
pp. 1344-1354
Author(s):  
Lingying Xu ◽  
Meiyan Wang ◽  
Yutian Tian ◽  
Xuezheng Shi ◽  
Yijie Shi ◽  
...  

CATENA ◽  
2021 ◽  
Vol 200 ◽  
pp. 105164
Author(s):  
Matheus Sampaio C. Barreto ◽  
Marlon Ramlogan ◽  
Dener Marcio S. Oliveira ◽  
Ernst Eduard J. Verburg ◽  
Evert J. Elzinga ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arthur Gross ◽  
Bruno Glaser

AbstractManure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha−1. Manure applications in conventional tillage systems led to higher SOC stocks (+ 2.2 Mg ha−1) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+ 2.7 Mg ha−1) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0–15 cm by 9.5 Mg ha−1 and in 16–20 cm by 13.6 Mg ha−1), but SOC stocks were also increased in deeper soils (> 20 cm 4.6 Mg ha−1), regardless of the tillage intensity. The highest relative SOC increase (+ 48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+ 3.1 Mg ha−1). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+ 5.1 Mg ha−1) and alkaline soils (+ 5.1 Mg ha−1). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+ 1.7 Mg ha−1) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (> 20 years) fertilizer effects and carbon sequestration.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1036
Author(s):  
Sauro Simoni ◽  
Giovanni Caruso ◽  
Nadia Vignozzi ◽  
Riccardo Gucci ◽  
Giuseppe Valboa ◽  
...  

Edaphic arthropod communities provide valuable information about the prevailing status of soil quality to improve the functionality and long-term sustainability of soil management. The study aimed at evaluating the effect of plant and grass cover on the functional biodiversity and soil characteristics in a mature olive orchard (Olea europaea L.) managed for ten years by two conservation soil managements: natural grass cover (NC) and conservation tillage (CT). The trees under CT grew and yielded more than those under NC during the period of increasing yields (years 4–7) but not when they reached full production. Soil management did not affect the tree root density. Collecting samples underneath the canopy (UC) and in the inter-row space (IR), the edaphic environment was characterized by soil structure, hydrological properties, the concentration and storage of soil organic carbon pools and the distribution of microarthropod communities. The soil organic carbon pools (total and humified) were negatively affected by minimum tillage in IR, but not UC, without a loss in fruit and oil yield. The assemblages of microarthropods benefited, firstly, from the grass cover, secondly, from the canopy effect, and thirdly, from a soil structure ensuring a high air capacity and water storage. Feeding functional groups—hemiedaphic macrosaprophages, polyphages and predators—resulted in selecting the ecotonal microenvironment between the surface and edaphic habitat.


2013 ◽  
Vol 56 (1) ◽  
pp. 91-101 ◽  
Author(s):  
H. Q. Nguyen ◽  
R. S. Kanwar ◽  
N. L. Hoover ◽  
P. Dixon ◽  
J. Hobbs ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


CATENA ◽  
2017 ◽  
Vol 151 ◽  
pp. 63-73 ◽  
Author(s):  
Samuel Bouchoms ◽  
Zhengang Wang ◽  
Veerle Vanacker ◽  
Sebastian Doetterl ◽  
Kristof Van Oost

Sign in / Sign up

Export Citation Format

Share Document