scholarly journals Mélanges and chaotic rock units: implications for exhumed subduction complexes and orogenic belts

2022 ◽  
pp. 100030
Author(s):  
Andrea Festa ◽  
Edoardo Barbero ◽  
Francesca Remitti ◽  
Kei Ogata ◽  
Gian Andrea Pini
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
José Joaquín Jara ◽  
Fernando Barra ◽  
Martin Reich ◽  
Mathieu Leisen ◽  
Rurik Romero ◽  
...  

AbstractThe subduction of oceanic plates beneath continental lithosphere is responsible for continental growth and recycling of oceanic crust, promoting the formation of Cordilleran arcs. However, the processes that control the evolution of these Cordilleran orogenic belts, particularly during their early stages of formation, have not been fully investigated. Here we use a multi-proxy geochemical approach, based on zircon petrochronology and whole-rock analyses, to assess the early evolution of the Andes, one of the most remarkable continental arcs in the world. Our results show that magmatism in the early Andean Cordillera occurred over a period of ~120 million years with six distinct plutonic episodes between 215 and 94 Ma. Each episode is the result of a complex interplay between mantle, crust, slab and sediment contributions that can be traced using zircon chemistry. Overall, the magmatism evolved in response to changes in the tectonic configuration, from transtensional/extensional conditions (215–145 Ma) to a transtensional regime (138–94 Ma). We conclude that an external (tectonic) forcing model with mantle-derived inputs is responsible for the episodic plutonism in this extensional continental arc. This study highlights the use of zircon petrochronology in assessing the multimillion-year crustal scale evolution of Cordilleran arcs.


2007 ◽  
Vol 115 (3) ◽  
pp. 315-334 ◽  
Author(s):  
Eduardo Garzanti ◽  
Carlo Doglioni ◽  
Giovanni Vezzoli ◽  
Sergio Andò

1968 ◽  
Vol 5 (3) ◽  
pp. 621-628 ◽  
Author(s):  
J. R. Vail ◽  
N. J. Snelling ◽  
D. C. Rex

The significance of new age determinations on pre-Katangan (Late Precambrian) rocks and minerals from Zambia and adjacent parts of Tanzania and Rhodesia is discussed. In northwestern Rhodesia, the Lomagundi-Piriwiri sediments were deposited between 2500 and 2000 m.y. ago and were folded along meridional trends at circa 1940 m.y. A later episode of folding and metamorphism along similar trends occurred about 1700 m.y. ago, but only affected the western part of the sedimentary sequence (the Piriwiri Series). This latter date is comparable to that which appears to characterize the Tumbide trend, a N- to NE-trending fold system, in Zambia.In Zambia the Tumbide trend is the oldest tectonic episode preserved in the basement and is found only in isolated blocks and cores into which later tectonisms have not penetrated. The dominant pre-Katangan tectonism is represented by the NE to ENE Irumide trend. Such tectonic trends are particularly well developed in the Irumide Orogenic Belt of northern Zambia and adjacent Tanzania. Age determinations set a younger limit of circa 900 m.y. to this trend and the existence of an Irumide Cycle between about 1600 and 900 m.y. is suggested. The possibility that the relatively unmetamorphosed sediments of the Upper Plateau Series and Abercorn Sandstones at the southern end of Lake Tanganyika, the Mafingi Series of northern Malawi, and the Konse Series of Tanzania, represent near-contemporaneous platform deposition associated with the Irumide belt is considered.From this and other recent studies the distribution of orogenic belts in central and eastern Africa can be revised and a number of features of their pattern and inter-relationships noted.


2020 ◽  
Vol 12 (1) ◽  
pp. 85-116 ◽  
Author(s):  
Kirtikumar Randive ◽  
Tushar Meshram

AbstractCarbonatites are carbonate-rich rocks of igneous origin. They form the magmas of their own that are generated in the deep mantle by low degrees of partial melting of carbonated peridotite or eclogite source rocks. They are known to occur since the Archaean times till recent, the activity showing gradual increase from older to younger times. They are commonly associated with alkaline rocks and be genetically related with them. They often induce metasomatic alteration in the country rocks forming an aureole of fenitization around them. They are host for economically important mineral deposits including rare metals and REE. They are commonly associated with the continental rifts, but are also common in the orogenic belts; but not known to occur in the intra-plate regions. The carbonatites are known to occur all over the globe, majority of the occurrences located in Africa, Fenno-Scandinavia, Karelian-Kola, Mongolia, China, Australia, South America and India. In the Indian Subcontinent carbonatites occur in India, Pakistan, Afghanistan and Sri Lanka; but so far not known to occur in Nepal, Bhutan, Bangladesh and Myanmar. This paper takes an overview of the carbonatite occurrences in the Indian Subcontinent in the light of recent data. The localities being discussed in detail cover a considerable time range (>2400 Ma to <0.6 Ma) from India (Hogenakal, Newania, Sevathur, Sung Valley, Sarnu-Dandali and Mundwara, and Amba Dongar), Pakistan (Permian Koga and Tertiary Pehsawar Plain Alkaline Complex which includes Loe Shilman, Sillai Patti, Jambil and Jawar), Afghanistan (Khanneshin) and Sri Lanka (Eppawala). This review provide the comprehensive information about geochemical characteristics and evolution of carbonatites in Indian Subcontinent with respect to space and time.


Lithos ◽  
2021 ◽  
pp. 106129
Author(s):  
Beatriz Benetti ◽  
Chiara Montomoli ◽  
Salvatore Iaccarino ◽  
Antonio Langone ◽  
Rodolfo Carosi
Keyword(s):  

Author(s):  
Kei Ogata ◽  
Andrea Festa ◽  
Gian Andrea Pini ◽  
Juan Luis Alonso

2014 ◽  
Vol 57 (2) ◽  
Author(s):  
Shoja Ansari ◽  
Ahmad Zamani

<p>In this paper the short-term seismic deformation of Iran is determined by the earthquake moment tensor summation. The study areas include the Alborz, Kopeh-Dagh, eastern Iran, Makran and Zagros orogenic belts. The spatial distribution and focal mechanisms of the earthquakes delineate the deformation zones. The mean directions of the P and T axes are determined by the equal area projection of the seismic moment tensors. The orientations of the P-axes are dominantly correlated with the NE crustal motion of Iran relative to Eurasia. The average strain rates are calculated in all of the regions. The maximum shear strain and dilatation rates are defined by the eigenvalues of the average strain rate tensors. The dilatation rate indicates that not only the dominant compression but also the subsidiary tension affects the Alborz and Makran orogenic belts. The velocity tensor components discriminate the vertical thickening and thinning of the crust in some regions of Iran. The seismic deformation rates, which are determined by the velocity tensors, are smaller than the geodetic deformation rates. In the high seismic deformation zones, such as the eastern Iran and Alborz, the geodetic deformation rate is comparable with the seismic deformation rate. Our results indicate that the NW Zagros and Kopeh-Dagh have the lowest seismic deformation rates. The seismic shortening rate increases from NW to SE in the Zagros orogenic belt. The seismic deformation orientations are different from the P-axes, probably due to the lateral translation. The maximum percentage of the seismic deformation in the study areas is related to the eastern Iran and the minimum one is related to the Makran orgenic belt. The average shape tensors indicate that the focal mechanisms in the Kopeh-Dagh have the highest internal similarity. The eastern Iran has the largest seismic moment rate, while the central Zagros has the lowest one.</p>


Sign in / Sign up

Export Citation Format

Share Document