Overland flow generation mechanisms affected by topsoil treatment: Application to soil conservation

Geomorphology ◽  
2015 ◽  
Vol 228 ◽  
pp. 796-804 ◽  
Author(s):  
P. Hueso-González ◽  
J.D. Ruiz-Sinoga ◽  
J.F. Martínez-Murillo ◽  
H. Lavee
RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
André Ricardo Loewen ◽  
◽  
Adilson Pinheiro

ABSTRACT Overland flow in watersheds is responsible for the occurrence of various environmental problems, including flood formation, erosion and the transportation of sediment, and the addition of pollutants to the soil. Additionally, understanding this hydrological process is fundamental to improving knowledge regarding individual interest factors in a region, since it interferes with agricultural productivity and water supply for both the population and industry, among other contributions. Two principal theorists have described the overland flow generation processes: Horton (1933) and Dunne (1978). The TOPMODEL (a topography-based hydrological model) approach represents the overland flow by variable contribution areas, which develop along the watercourses following the concept of Dunne’s overland flow. Thus, this study aimed to evaluate the mechanisms of overland flow generated in the Concórdia River basin based on the application of the TOPMODEL, using measured hydrological data obtained from a high frequency installed monitoring network. Discharge data series were performed for three sub-basins: SF3 (29.74 km2), SF2 (5.81 km2), and SF1 (2.36 km2). In these sub-basins, the flood hydrograph were separated and its response conditions were verified in the TOPMODEL. Rainfall, discharge, and potential evapotranspiration data were used in an hourly scale for the three sub-basins. In general, the model showed adequate efficiency for the SF3 sub-basin; however, the SF2 and SF1 sub-basins showed distortion in its parameters, thereby delaying the simulated hydrograph in terms of time. Accordingly, the results corroborate the more frequent appearance of Dunnian overland flow in the SF3 sub-basin, where the topography is smoother and features large areas with a low slope, which serve as variable saturation areas. The SF2 and SF1 sub-basins present characteristics that strongly reflect Hortonian overland flow, with slopes in the topography that do not allow the frequent formation of variable contribution areas.


2014 ◽  
Vol 18 (5) ◽  
pp. 1873-1883 ◽  
Author(s):  
G.-Y. Niu ◽  
D. Pasetto ◽  
C. Scudeler ◽  
C. Paniconi ◽  
M. Putti ◽  
...  

Abstract. Evolution of landscape heterogeneity is controlled by coupled Earth system dynamics, and the resulting process complexity is a major hurdle to cross towards a unified theory of catchment hydrology. The Biosphere 2 Landscape Evolution Observatory (LEO), a 334.5 m2 artificial hillslope built with homogeneous soil, may have evolved into heterogeneous soil during the first experiment driven by an intense rainfall event. The experiment produced predominantly seepage face water outflow, but also generated overland flow, causing superficial erosion and the formation of a small channel. In this paper, we explore the hypothesis of incipient heterogeneity development in LEO and its effect on overland flow generation by comparing the modeling results from a three-dimensional physically based hydrological model with measurements of total mass change and seepage face flow. Our null hypothesis is that the soil is hydraulically homogeneous, while the alternative hypothesis is that LEO developed downstream heterogeneity from transport of fine sediments driven by saturated subsurface flow. The heterogeneous case is modeled by assigning saturated hydraulic conductivity at the LEO seepage face (Ksat,sf) different from that of the rest (Ksat). A range of values for Ksat, Ksat,sf, soil porosity, and pore size distribution is used to account for uncertainties in estimating these parameters, resulting in more than 20 000 simulations. It is found that the best runs under the heterogeneous soil hypothesis produce smaller errors than those under the null hypothesis, and that the heterogeneous runs yield a higher probability of best model performance than the homogeneous runs. These results support the alternative hypothesis of localized incipient heterogeneity of the LEO soil, which facilitated generation of overland flow. This modeling study of the first LEO experiment suggests an important role of coupled water and sediment transport processes in the evolution of subsurface heterogeneity and on overland flow generation, highlighting the need of a coupled modeling system that integrates across disciplinary processes.


CATENA ◽  
2014 ◽  
Vol 113 ◽  
pp. 202-212 ◽  
Author(s):  
V. Butzen ◽  
M. Seeger ◽  
S. Wirtz ◽  
M. Huemann ◽  
C. Mueller ◽  
...  

Ecohydrology ◽  
2010 ◽  
Vol 4 (3) ◽  
pp. 367-378 ◽  
Author(s):  
Bui Xuan Dung ◽  
Shusuke Miyata ◽  
Takashi Gomi

2004 ◽  
Vol 295 (1-4) ◽  
pp. 276-290 ◽  
Author(s):  
S Godsey ◽  
H Elsenbeer ◽  
R Stallard

2007 ◽  
Vol 21 (10) ◽  
pp. 1308-1317 ◽  
Author(s):  
Carmelo Agnese ◽  
Giorgio Baiamonte ◽  
Cecilia Corrao

2020 ◽  
Vol 68 (2) ◽  
pp. 99-110 ◽  
Author(s):  
Yuexiu Wen ◽  
Caihong Hu ◽  
Guodong Zhang ◽  
Shengqi Jian

AbstractThe Loess Plateau is the main source of water in Yellow River, China. After 1980s, the Yellow river water presented a significant reduction, what caused the decrease of the Yellow river discharge had been debated in academic circles. We proceeded with runoff generation mechanisms to explain this phenomenon. We built saturation excess runoff and infiltration excess runoff generation mechanisms for rainfall–runoff simulation in Jingle sub-basin of Fen River basin on the Loess Plateau, to reveal the influence of land use change on flood processes and studied the changes of model parameters under different underlying conditions. The results showed that the runoff generation mechanism was mainly infiltration-excess overland flow, but the flood events of saturation-excess overland flow had an increasing trend because of land use cover change (the increase of forestland and grassland areas and the reduction of cultivated land). Some of the model parameters had physical significances,such as water storage capacity (WM), infiltration capacity (f), evapotranspiration (CKE), soil permeability coefficient (k) and index of storage capacity distribution curve (n) showed increasing trends, and index of infiltration capacity distribution curve (m) showed a decreasing trend. The above results proved the changes of runoff generation mechanism from the perspective of model parameters in Jingle sub-basin, which can provide a new perspective for understanding the discharge reduction in the Yellow River basin.


Sign in / Sign up

Export Citation Format

Share Document