River flow control on intertidal mudflat sedimentation in the mouth of a macrotidal estuary

Geomorphology ◽  
2015 ◽  
Vol 239 ◽  
pp. 174-181 ◽  
Author(s):  
Antoine Cuvilliez ◽  
Robert Lafite ◽  
Julien Deloffre ◽  
Maxence Lemoine ◽  
Estelle Langlois ◽  
...  
2013 ◽  
Vol 12 (1) ◽  
pp. 103-114 ◽  
Author(s):  
Qingyun Yu ◽  
You Wang ◽  
Xuexi Tang ◽  
Ming Li

2015 ◽  
Vol 32 (6) ◽  
pp. 1382-1391 ◽  
Author(s):  
N. Zdankus ◽  
P. Punys ◽  
E. Martinaitis ◽  
T. Zdankus

2013 ◽  
Vol 43 (1) ◽  
pp. 29-50 ◽  
Author(s):  
Rodolfo Bolaños ◽  
Jennifer M. Brown ◽  
Laurent O. Amoudry ◽  
Alejandro J. Souza

Abstract The effect of tides, river, wind and Earth’s rotation on the three-dimensional circulation in the Dee, a macrotidal estuary, are investigated using a fine-resolution model. The interactions of the large tidal amplitude, currents, river, and wind-generated circulation require baroclinic and unsteady studies to properly understand the estuarine dynamics. Assessment of the model skill has been carried out by model–observation comparisons for salinity, which is the main control for density, surface elevation, current, and turbulence. Stationary nondimensional numbers were only partially able to characterize the dynamics in this (real) complex macrotidal estuary. At low water, tidal straining and constrained river flow cause stratification. Large spatial variability occurs in the current and residual patterns, with flood-dominated maximum values occurring within the tidal channels. The tides control residual circulation by modulating stratification through tidal straining and bathymetric constraint on river flow. Tide–stratification–river interaction causes an unsteady pattern of residual circulation and tidal pulses. River-induced pulses are enhanced near low tide–inducing density-driven circulation. Wind effects are concentrated near the surface, mainly occurring at high tide because of increased fetch. Even though Coriolis has, overall, a small contribution it produces tidal pulses modifying the current and salinity distribution.


Author(s):  
Florent Di Meglio ◽  
Tarek Rabbani ◽  
Xavier Litrico ◽  
Alexandre M. Bayen

2018 ◽  
Vol 4 (1) ◽  
pp. 32-38
Author(s):  
Bhimo Rizky Samudro ◽  
Yogi Pasca Pratama

This paper will describe the function of water resources to support business activities in Surakarta regency, Central Java province. Surakarta is a business city in Central Java province with small business enterprises and specific culture. This city has a famous river with the name is Bengawan Solo. Bengawan Solo is a River Flow Regional (RFR) to support business activities in Surakarta regency. Concious with the function, societies and local government in Surakarta must to manage the sustainability of River Flow Regional (RFR) Bengawan Solo. It is important to manage the sustainability of business activity in Surakarta regency.   According to the condition in Surakarta regency, this paper will explain how the simulation of Low Impact Development Model in Surakarta regency. Low Impact Development is a model that can manage and evaluate sustainability of water resources in River Flow Regional (RFR). Low Impact Development can analys goals, structures, and process water resources management. The system can also evaluate results and impacts of water resources management. From this study, we hope that Low Impact Development can manage water resources in River Flow Regional (RFR) Bengawan Solo.  


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Raka Maulana ◽  
Yulianti Pratama ◽  
Lina Apriyanti

<p>Some areas in the city of Bandung is an area that dilitasi by the flow of the river, to prevent the introduction of garbage into the river basin is necessary to note the waste management systems in residential areas along the river. Cidurian river has a length of 24.86 Km along the river flow. Consists of the city of Bandung and Bandung regency. Administrative regions Cidurian River past eight (8) districts, from the region in the District Kiaracondong precisely Village Babakan Babakan Sari and Surabaya populous and the most densely populated. Thus, there should be community-based waste management in the form of a reduction in resources to prevent potential entry of waste into the river basin. Planning waste reduction will be divided into two, namely the reduction of inorganic waste with waste bank then the reduction of organic waste with absorption holes biopori, and bio reactor mini determination of the reduction is determined by the results of the analysis of the sampling covers the composition and garbage, then the result of the measurement characteristics test and analysis results questionnaire.</p>


2013 ◽  
Vol 487 ◽  
pp. 7-13 ◽  
Author(s):  
TG Gerwing ◽  
AMA Gerwing ◽  
D Drolet ◽  
DJ Hamilton ◽  
MA Barbeau

Sign in / Sign up

Export Citation Format

Share Document