scholarly journals A thermo-hydro-mechanical approach to soil slope stability under climate change

Geomorphology ◽  
2022 ◽  
pp. 108108
Author(s):  
Gianvito Scaringi ◽  
Marco Loche
2012 ◽  
Vol 204-208 ◽  
pp. 241-245
Author(s):  
Yang Jin

The stability of soil slope under seepage is calculated and analyzed by using finite element method based on the technique of shear strength reduction. When the condition of seepage or not is considered respectively, the critical failure state of slopes and corresponding safety coefficients can be determined by the numerical analysis and calculation. Besides, through analyzing and comparing the calculation results, it shows that seepage has a negative impact on slope stability.


2012 ◽  
Vol 170-173 ◽  
pp. 847-852
Author(s):  
Peng Ming Jiang ◽  
Zhong Lei Yan ◽  
Peng Li

As the complexity of unsaturated soil theory, and it must have a long test period when we study the unsaturated soils, so the conventional design analysis software does not provide such analysis, so we can imagine that such a slope stability analysis does not accurately reflect the actual state of the slope. Based on the known soil moisture content,this paper use the soil water characteristic curve and strength theory of unsaturated soil to calculate the strength reduction parameters of soil which can calculate the stability of the soil slope when using the common calculation method. It is noticeable that this method can be extended and applied if we establish regional databases for this simple method, and these databases can improve the accuracy of the calculation of slope stability.


2021 ◽  
Author(s):  
Yulong Zhu ◽  
Tatsuya Ishikawa ◽  
Tomohito J. Yamada ◽  
Srikrishnan Siva Subramanian

Abstract This paper proposes an effective approach for evaluating the influences of climate change on slope stability in seasonally cold regions. Firstly, to semi-quantitatively assess the effects of climate changes on the uncertainty of climate factors, this study analyzes the trend of the two main climate factors (precipitation and air temperature) by the regression analysis using the meteorological monitoring data of the past 120 years in different scales (e.g., world, country (Japan), and city (Sapporo)), and the meteorological simulation data obtained by downscaling the outputs of three different regional atmospheric models (RAMs) with lateral boundary conditions from three different general circulation models (GCMs). Next, to discuss the effects of different climate factors (air temperature, precipitation, etc.) and to determine the key climate factors on the slope instability, an assessment approach for evaluating the effects of climate changes on slope instability is proposed through the water content simulation and slope stability analysis using a 2-dimensional (2D) finite element method (FEM) homogeneous conceptual slope model with considering freeze-thaw action. Finally, to check the effectiveness of the above assessment approach, assessment of instability of an actual highway embankment slope with the local layer geometry is done by applying the past and predicted future climate data. The results indicate that affected by global warming, the air temperature rise in some cold cities is more serious. The predicted future weather will affect the shape of the normal density curve (NDC) of the distribution of slope failures in one year. The climate changes (especially the increase in precipitation) in the future will increase the infiltration during the Spring season. It will lengthen the time that the highway slope is in an unstable state due to high volumetric water content, thereby enhancing the instability of the slopes and threatening more slopes in the future.


Sign in / Sign up

Export Citation Format

Share Document