A fine resolution regional climate change experiment for the Eastern Mediterranean: Analysis of the present climate simulations

2008 ◽  
Vol 64 (1-2) ◽  
pp. 93-104 ◽  
Author(s):  
V. Kotroni ◽  
S. Lykoudis ◽  
K. Lagouvardos ◽  
D. Lalas
Eos ◽  
2007 ◽  
Vol 88 (47) ◽  
pp. 504-504 ◽  
Author(s):  
Edwin P. Maurer ◽  
Levi Brekke ◽  
Tom Pruitt ◽  
Philip B. Duffy

The Holocene ◽  
2018 ◽  
Vol 28 (8) ◽  
pp. 1225-1244 ◽  
Author(s):  
Matthieu Ghilardi ◽  
David Psomiadis ◽  
Valérie Andrieu-Ponel ◽  
Maxime Colleu ◽  
Pavlos Sotiropoulos ◽  
...  

Phaistos was one of the most important Minoan palaces in Crete and previous studies have addressed its relationship with the paleo-seashore position during historical times. Here, we reconstruct the environmental evolution of Phaistos from Early Minoan to Roman times. Study of two stratigraphic sections and nine boreholes drilled in the westernmost part of the Messara Plain has revealed the stratigraphy of the Mid- to Late-Holocene sediments. Laboratory analyses comprise granulometry, magnetic susceptibility measurements and identification of mollusks, diatoms and pollen grains. Eighteen radiocarbon dates provide a robust chronostratigraphy. In addition, a geophysical survey (electric resistivity tomography (ERT) method) was conducted to reveal the sub-surface morphology in the coring area. The results reveal that a freshwater lake existed from ca. 2100–2000 BC to ca. 1200–1100 BC, which subsequently became swampland until ca. 700 BC. A lake retreat is identified at ca. 1200–1000 BC and can be interpreted as resulting from the 3.2 cal kyr BP rapid climate change (RCC) dry event, observed elsewhere in the Eastern Mediterranean. Subsequently, from the 7th to the 5th century BC, there was the input of detrital material and fluvial dynamics prevailed until at least Roman times. The origin of the lake and its disappearance are discussed in the context of regional climate change and local tectonic activity, without excluding possible human influences. We also reconstruct the vegetation history for the period from the Late Minoan to the Early Archaic period. Pollen analysis reveals a Mediterranean maquis landscape dominated by Olea, together with hygrophilous vegetation, and highlights a clear transition from limnic to swampy environmental conditions around 1100 BC. The pollen sequence is also important for assessing the impact of the 3.2 cal. kyr BP RCC event and for assessing the possibility of an abrupt discontinuity in human activity around Phaistos after the demise of the Minoan Civilization.


2007 ◽  
Vol 30 (5) ◽  
pp. 533-552 ◽  
Author(s):  
Silvina A. Solman ◽  
Mario N. Nuñez ◽  
María Fernanda Cabré

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhili Wang ◽  
Lei Lin ◽  
Yangyang Xu ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
...  

AbstractAnthropogenic aerosol (AA) forcing has been shown as a critical driver of climate change over Asia since the mid-20th century. Here we show that almost all Coupled Model Intercomparison Project Phase 6 (CMIP6) models fail to capture the observed dipole pattern of aerosol optical depth (AOD) trends over Asia during 2006–2014, last decade of CMIP6 historical simulation, due to an opposite trend over eastern China compared with observations. The incorrect AOD trend over China is attributed to problematic AA emissions adopted by CMIP6. There are obvious differences in simulated regional aerosol radiative forcing and temperature responses over Asia when using two different emissions inventories (one adopted by CMIP6; the other from Peking university, a more trustworthy inventory) to driving a global aerosol-climate model separately. We further show that some widely adopted CMIP6 pathways (after 2015) also significantly underestimate the more recent decline in AA emissions over China. These flaws may bring about errors to the CMIP6-based regional climate attribution over Asia for the last two decades and projection for the next few decades, previously anticipated to inform a wide range of impact analysis.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3704
Author(s):  
Agnieszka Karman ◽  
Andrzej Miszczuk ◽  
Urszula Bronisz

The article deals with the competitiveness of regions in the face of climate change. The aim was to present the concept of measuring the Regional Climate Change Competitiveness Index. We used a comparative and logical analysis of the concept of regional competitiveness and heuristic conceptual methods to construct the index and measurement scale. The structure of the index includes six broad sub-indexes: Basic, Natural, Efficiency, Innovation, Sectoral, Social, and 89 indicators. A practical application of the model was presented for the Mazowieckie province in Poland. This allowed the region’s performance in the context of climate change to be presented, and regional weaknesses in the process of adaptation to climate change to be identified. The conclusions of the research confirm the possibility of applying the Regional Climate Change Competitiveness Index in the economic analysis and strategic planning. The presented model constitutes one of the earliest tools for the evaluation of climate change competitiveness at a regional level.


Sign in / Sign up

Export Citation Format

Share Document