Application of magnetotelluric (MT) study for the identification of shallow and deep aquifers in Dholera geothermal region

2020 ◽  
Vol 11 ◽  
pp. 100472 ◽  
Author(s):  
Kriti Yadav ◽  
Manan Shah ◽  
Anirbid Sircar
1991 ◽  
Vol 23 (1-3) ◽  
pp. 545-553
Author(s):  
M. Rödelsperger ◽  
U. Rohmann ◽  
F. Frimmel

A sampling device was designed as a stationary equipment for deep monitoring wells in order to obtain representative groundwater samples from different layers of the aquifer. The device consists of several packer units which can be combined at variable distances, allowing adaption to the local conditions of the aquifer and of the well. The pumps are situated below the groundwater table. Each of the drawing tubes ends between two packers at the concerning depth. Experimental results demonstrate the importance of the application of a stationary packer system instead of a mobile doublepacker in deep aquifers of inhomogeneous structure. Examples of concentration profiles obtained from layerwise groundwater sampling are given and a technique for selective groundwater discharge is described.


1987 ◽  
Vol 94 (3-4) ◽  
pp. 237-265 ◽  
Author(s):  
Ronit Nativ ◽  
Yehuda Bachmat ◽  
Arie Issar

2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Elsiddig Eldaw ◽  
Tao Huang ◽  
Adam Khalifa Mohamed ◽  
Yahaya Mahama

AbstractDeterioration of groundwater quality due to drastic human interventions is rising at an alarming rate particularly in lower- and middle-income countries. Yet, limited research effort has been devoted to monitoring and ascertaining groundwater quality. The present study develops a comprehensive irrigation water quality index (IWQI) for rating water quality of shallow and deep aquifers in North Kurdufan province, Sudan. The new approach is developed to overcome the deficiencies of the existing irrigation indices and coming up with a unified decision for classifying water quality for irrigation purposes. Because of these indices like permeability index (PI), sodium absorption ratio (SAR), etc., depending on specific elements, entirely subjective, as well as the great variations in their results, particularly when classifying water quality. Thus, IWQI is created based on eight indices that are generally used to evaluate irrigation water quality, plus three physicochemical parameters have been proven an impact on water quality. The analytic hierarchy process (AHP) is applied to minimize the subjectivity at assign parameter weights under multiple criteria decision analysis tools (MCDA). The spatial distribution of IWQI agrees with the spatial distribution of the most parameters. The results of our approach reveal that the majority of samples are suitable for irrigation uses for both aquifers except few wells in the confined aquifer. Also, noted that there are very variations in the irrigation indices results for classifying water quality. The comparison result showed that the new index robust, fair calculations and has best classifying of water quality.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1310
Author(s):  
Hajer Azaiez ◽  
Hakim Gabtni ◽  
Mourad Bédir

Electric resistivity sounding and tomography, as well as electromagnetic sounding, are the classical methods frequently used for hydrogeological studies. In this work, we propose the development and implementation of an original integrated approach using the unconventional hydro–geophysical methods of gravity and seismic reflection for the fast, large–scale characterization of hydrogeological potential using the Ain El Beidha plain (central Tunisia) as an analogue. Extending the values of vintage petroleum seismic reflection profiles and gravity data, in conjunction with available geological and hydrogeological information, we performed an advanced analysis to characterize the geometry of deep tertiary (Oligocene and Eocene) aquifers in this arid area. Residual and tilt angle gravity maps revealed that most gravity anomalies have a short wavelength. The study area was mainly composed of three major areas: the Oued Ben Zitoun and Ain El Beidha basins, which are both related to negative gravity trends corresponding to low–density subsiding depocenters. These basins are separated by an important NE–SW trend called “El Gonna–J. El Mguataa–Kroumet Zemla” gravity high. Evaluation of the superposition of detected lineaments and Euler deconvolution solutions’ maps showed several NE–SW and N–S relay system faults. The 3D density inversion model using a lateral and vertical cutting plane suggested the presence of two different tectonic styles (thin VS thick). Results from the gravity analysis were in concordance with the seismic analysis. The deep Oligocene and Eocene seismic horizons were calibrated to the hydraulic wells and surrounding outcrops. Oligocene and Eocene geological reservoirs appear very fractured and compartmented. The faulting network also plays an important role in enhancing groundwater recharge process of the Oligocene and Eocene aquifers. Finally, generated isochron maps provided an excellent opportunity to develop future comprehensive exploration surveys over smaller and more favorable areas’ sub–basins.


2018 ◽  
pp. 22-27 ◽  
Author(s):  
N. K. Lazutin ◽  
V. A. Beshentsev ◽  
A. A. Gudkova

The minimization of unwanted technogenic impact is one of the important problems in oil and gas industry. Wastewater burial in deep aquifers is effective, widespread and the least polluting way to dispose of industrial wastes. The article presents methods of scientific knowledge (analysis, synthesis) data about hydrogeological conditions of wastewater burial in Cenomanian absorbing horizon in the territory of the Beregovoye field.


Sign in / Sign up

Export Citation Format

Share Document