Evaluating the strategy of integrated urban-rural planning system and analyzing its effects on land surface temperature in a rapidly developing region

2016 ◽  
Vol 56 ◽  
pp. 147-156 ◽  
Author(s):  
Roshanak Afrakhteh ◽  
Ali Asgarian ◽  
Yousef Sakieh ◽  
Alireza Soffianian
Author(s):  
Manjula Ranagalage ◽  
Yuji Murayama ◽  
DMSLB Dissanayake ◽  
Matamyo Simwanda

Although urbanization has contributed to improving living conditions, it has had negative impacts on the natural environment in the urbanized areas. Urbanization has changed the urban landscape and resulted in increasing land surface temperature (LST). Thus, studies related to LST in various urban environments have become a popular research topic. However, few LST studies focusing on the mountain landscapes (i.e. hill stations) have been carried out. The primary objective of this study is to investigate changes in the landscape and their impacts on LST intensity (LSTI) in the tropical mountain city of Nuwara Eliya, Sri Lanka. The study utilized annual median temperatures extracted from Landsat data collected from 1996 to 2017 based on the Google Earth Engine (GEE) interface. The fractions of built-up (BL), forest (FL), and agricultural (AL) land were calculated using land use and cover maps based on the urban-rural zone (URZ) analysis. The urban-rural margin was demarcated based on the fraction of BL (<10%) and LSTI was measured using the mean LST difference in the urban-rural zone. In addition, the mixture of land use types was calculated using the AL/FL and BL/FL fraction ratios, and grid-based density analysis. The result shows that the BL in all URZ rapidly developed, while AL decreased during the period 1996 to 2017. There was minimal change in the forest area of the Nuwara Eliya owing to the government forest preservation policies. The fraction of the BL increased from 32.4% in 1996 to 58.7% in 2017 in the city center zone (URZ1) resulting in increased mean LST by 4.7 °C. Furthermore, the increase of the BL/FL fraction ratio and the decrease of the AL/FL fraction ratio were positively correlated with the mean LST. Grid-based analysis showed an increasing positive relationship between mean LST and density of BL. This indicated that BL density has been a crucial element in increasing LST in the study area. The results of this study will be a useful indicator to introduce improved landscape and urban planning in the future to minimize the negative impact of LST on urban sustainability.


2019 ◽  
Vol 11 (19) ◽  
pp. 5517 ◽  
Author(s):  
Manjula Ranagalage ◽  
Yuji Murayama ◽  
DMSLB Dissanayake ◽  
Matamyo Simwanda

Although urbanization has contributed to improving living conditions, it has had negative impacts on the natural environment in urbanized areas. Urbanization has changed the urban landscape and resulted in increasing land surface temperature (LST). Thus, studies related to LST in various urban environments have become popular. However, there are few LST studies focusing on mountain landscapes (i.e., hill stations). Therefore, this study investigated the changes in the landscape and their impacts on LST intensity (LSTI) in the tropical mountain city of Nuwara Eliya, Sri Lanka. The study utilized annual median temperatures extracted from Landsat data collected from 1996 to 2017 based on the Google Earth Engine (GEE) interface. The fractions of built-up (BL), forested (FL) and agricultural (AL) land, were calculated using land use and cover maps based on urban–rural zone (URZ) analysis. The urban–rural margin was demarcated based on the fractions of BL (<10%), and LSTI that were measured using the mean LST difference in the urban–rural zone. Besides, the mixture of land-use types was calculated using the AL/FL and BL/FL fraction ratios, and grid-based density analysis. The results revealed that the BL in all URZs rapidly developed, while AL decreased during the period 1996 to 2017. There was a minimal change in the forest area of the Nuwara Eliya owing to the government’s forest preservation policies. The mean temperature of the study area increased by 2.1 °C from 1996 to 2017. The magnitude of mean LST between urban–rural zones also increased from 1.0 °C (1996) to 3.5 °C (2017). The results also showed that mean LST was positively correlated with the increase and decrease of the BL/FL and AL/FL fraction ratios, respectively. The grid-based analysis showed an increasing, positive relationship between mean LST and density of BL. This indicated that BL density had been a crucial element in increasing LST in the study area. The results of this study will be a useful indicator to introduce improved landscape and urban planning in the future to minimize the negative impact of LST on urban sustainability.


Author(s):  
Georgiana Grigoraș ◽  
Bogdan Urițescu

Abstract The aim of the study is to find the relationship between the land surface temperature and air temperature and to determine the hot spots in the urban area of Bucharest, the capital of Romania. The analysis was based on images from both moderate-resolution imaging spectroradiometer (MODIS), located on both Terra and Aqua platforms, as well as on data recorded by the four automatic weather stations existing in the endowment of The National Air Quality Monitoring Network, from the summer of 2017. Correlation coefficients between land surface temperature and air temperature were higher at night (0.8-0.87) and slightly lower during the day (0.71-0.77). After the validation of satellite data with in-situ temperature measurements, the hot spots in the metropolitan area of Bucharest were identified using Getis-Ord spatial statistics analysis. It has been achieved that the “very hot” areas are grouped in the center of the city and along the main traffic streets and dense residential areas. During the day the "very hot spots” represent 33.2% of the city's surface, and during the night 31.6%. The area where the mentioned spots persist, falls into the "very hot spot" category both day and night, it represents 27.1% of the city’s surface and it is mainly represented by the city center.


2021 ◽  
Vol 1825 (1) ◽  
pp. 012021
Author(s):  
Nasrullah Zaini ◽  
Muhammad Yanis ◽  
Marwan ◽  
Muhammad Isa ◽  
Freek van der Meer

Sign in / Sign up

Export Citation Format

Share Document