scholarly journals The Impacts of Landscape Changes on Annual Mean Land Surface Temperature in the Tropical Mountain City of Sri Lanka: A Case Study of Nuwara Eliya (1996–2017)

2019 ◽  
Vol 11 (19) ◽  
pp. 5517 ◽  
Author(s):  
Manjula Ranagalage ◽  
Yuji Murayama ◽  
DMSLB Dissanayake ◽  
Matamyo Simwanda

Although urbanization has contributed to improving living conditions, it has had negative impacts on the natural environment in urbanized areas. Urbanization has changed the urban landscape and resulted in increasing land surface temperature (LST). Thus, studies related to LST in various urban environments have become popular. However, there are few LST studies focusing on mountain landscapes (i.e., hill stations). Therefore, this study investigated the changes in the landscape and their impacts on LST intensity (LSTI) in the tropical mountain city of Nuwara Eliya, Sri Lanka. The study utilized annual median temperatures extracted from Landsat data collected from 1996 to 2017 based on the Google Earth Engine (GEE) interface. The fractions of built-up (BL), forested (FL) and agricultural (AL) land, were calculated using land use and cover maps based on urban–rural zone (URZ) analysis. The urban–rural margin was demarcated based on the fractions of BL (<10%), and LSTI that were measured using the mean LST difference in the urban–rural zone. Besides, the mixture of land-use types was calculated using the AL/FL and BL/FL fraction ratios, and grid-based density analysis. The results revealed that the BL in all URZs rapidly developed, while AL decreased during the period 1996 to 2017. There was a minimal change in the forest area of the Nuwara Eliya owing to the government’s forest preservation policies. The mean temperature of the study area increased by 2.1 °C from 1996 to 2017. The magnitude of mean LST between urban–rural zones also increased from 1.0 °C (1996) to 3.5 °C (2017). The results also showed that mean LST was positively correlated with the increase and decrease of the BL/FL and AL/FL fraction ratios, respectively. The grid-based analysis showed an increasing, positive relationship between mean LST and density of BL. This indicated that BL density had been a crucial element in increasing LST in the study area. The results of this study will be a useful indicator to introduce improved landscape and urban planning in the future to minimize the negative impact of LST on urban sustainability.

Author(s):  
Manjula Ranagalage ◽  
Yuji Murayama ◽  
DMSLB Dissanayake ◽  
Matamyo Simwanda

Although urbanization has contributed to improving living conditions, it has had negative impacts on the natural environment in the urbanized areas. Urbanization has changed the urban landscape and resulted in increasing land surface temperature (LST). Thus, studies related to LST in various urban environments have become a popular research topic. However, few LST studies focusing on the mountain landscapes (i.e. hill stations) have been carried out. The primary objective of this study is to investigate changes in the landscape and their impacts on LST intensity (LSTI) in the tropical mountain city of Nuwara Eliya, Sri Lanka. The study utilized annual median temperatures extracted from Landsat data collected from 1996 to 2017 based on the Google Earth Engine (GEE) interface. The fractions of built-up (BL), forest (FL), and agricultural (AL) land were calculated using land use and cover maps based on the urban-rural zone (URZ) analysis. The urban-rural margin was demarcated based on the fraction of BL (&lt;10%) and LSTI was measured using the mean LST difference in the urban-rural zone. In addition, the mixture of land use types was calculated using the AL/FL and BL/FL fraction ratios, and grid-based density analysis. The result shows that the BL in all URZ rapidly developed, while AL decreased during the period 1996 to 2017. There was minimal change in the forest area of the Nuwara Eliya owing to the government forest preservation policies. The fraction of the BL increased from 32.4% in 1996 to 58.7% in 2017 in the city center zone (URZ1) resulting in increased mean LST by 4.7 &deg;C. Furthermore, the increase of the BL/FL fraction ratio and the decrease of the AL/FL fraction ratio were positively correlated with the mean LST. Grid-based analysis showed an increasing positive relationship between mean LST and density of BL. This indicated that BL density has been a crucial element in increasing LST in the study area. The results of this study will be a useful indicator to introduce improved landscape and urban planning in the future to minimize the negative impact of LST on urban sustainability.


Climate ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 65 ◽  
Author(s):  
DMSLB Dissanayake

This study investigated the spatiotemporal changes of land use land cover (LULC) and its impact on land surface temperature (LST) in the Galle Municipal Council area (GMCA), Sri Lanka. The same was achieved by employing the multi-temporal satellite data and geo-spatial techniques between 1996 and 2019. The post-classification change detection technique was employed to determine the temporal changes of LULC, and its results were utilized to assess the LST variation over the LULC changes. The results revealed that the area had undergone a drastic LULC transformation. It experienced 38% increase in the built-up area, while vegetation and non-built-up area declined by 26% and 12%, respectively. Rapid urban growth has had a significant effect on the LST, and the built-up area had the highest mean LST of 22.7 °C, 23.2 °C, and 26.3 °C for 1996, 2009, and 2019, correspondingly. The mean LST of the GMCA was 19.2 °C in 1996, 20.1 °C in 2009, and 22.4 °C in 2019. The land area with a temperature above 24 °C increased by 9% and 12% in 2009 and 2019, respectively. The highest LST variation (5.5 °C) was observed from newly added built-up area, which was also transferred from vegetation land. Meanwhile, the lowest mean LST difference was observed from newly added vegetation land. The results show that the mean annual LST increased by 3.2 °C in the last 22 years in GMCA. This study identified significant challenges for urban planners and respective administrative bodies to mitigate and control the negative effect of LST for the long livability of Galle City.


2021 ◽  
Vol 283 ◽  
pp. 01038
Author(s):  
Jing Sun ◽  
Jing He

The rapid urbanization process has recently led to significant land use and land cover (LULC) changes, thereby affecting the climate and the environment. The purpose of this study is to analyze the LULC changes in Hefei City, Anhui Province, and their relationship with land surface temperature (LST). To achieve this goal, multitemporal Landsat data were used to monitor the LULC and LST between 2005 and 2015. The study also used correlation analysis to analyze the relationship between LST, LULC, and other spectral indices (NDVI, NDBI, and NDWI). The results show that the built-up land has expanded significantly, transforming from 488.26 km2 in 2005 to 575.64 km2 in 2015. It further shows that the mean LST in Hefei city has increased from 284.0 K in 2005 to 285.86 K in 2015. The results also indicate that there is a positive correlation between LST and NDVI and NDBI, while there is a negative correlation between LST and NDWI. This means that urban expansion and reduced water bodies will lead to an increase in LST.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1037
Author(s):  
Mohamed Ali Mohamed

Monitoring the impact of changes in land use/land cover (LULC) and land surface temperature (LST) is of great importance in environmental and urban studies. In this context, this study aimed to analyze the dynamics of LULC and its impact on the spatiotemporal variation of the LST in the two largest urban cities in Syria, Damascus, and Aleppo. To achieve this, LULC changes, normalized difference vegetation index (NDVI), and LST were calculated from multi-temporal Landsat data for the period 2010 to 2018. The study revealed significant changes in LULC, which were represented by a decrease in agricultural land and green areas and an increase in bare areas in both cities. In addition, built-up areas decreased in Aleppo and increased in Damascus during the study period. The temporal and spatial variation of the LST and its distribution pattern was closely related to the effect of changes in LULC as well as to land use conditions in each city. This effect was greater in Aleppo than in Damascus, where Aleppo recorded a higher increase in the mean LST, by about 2 °C, than in Damascus, where it was associated with greater degradation and loss of vegetation cover. In general, there was an increasing trend in the minimum and maximum LST as well as an increasing trend in the mean LST in both cities. The negative linear relationship between LST and NDVI confirms that vegetation cover can help reduce LST in both cities. This study can draw the attention of relevant departments to pay more attention to mitigating the negative impact of LULC changes in order to limit the increase in LST.


Sign in / Sign up

Export Citation Format

Share Document