Novel expression patterns of connexin 30.3 in adult rat cochlea

2010 ◽  
Vol 265 (1-2) ◽  
pp. 77-82 ◽  
Author(s):  
Wen-Hung Wang ◽  
Jiann-Jou Yang ◽  
Yen-Chun Lin ◽  
Jen-Tsung Yang ◽  
Shuan-Yow Li
2003 ◽  
Vol 51 (7) ◽  
pp. 903-912 ◽  
Author(s):  
Toshihiro Suzuki ◽  
Tetsuro Takamatsu ◽  
Masahito Oyamada

To elucidate whether the two different gap junction proteins connexin43 (Cx43) and connexin26 (Cx26) are expressed and localized in a similar manner in the adult rat cochlea, we performed three-dimensional confocal microscopy using cryosections and surface preparations. In the cochlear lateral wall, Cx43-positive spots were localized mainly in the stria vascularis and only a few spots were present in the spiral ligament, whereas Cx26-positive spots were detected in both the stria vascularis and the spiral ligament. In the spiral limbus, Cx43 was widely distributed, whereas Cx26 was more concentrated on the side facing the scala vestibuli and in the basal portion. In the organ of Corti, Cx43-positive spots were present between the supporting cells but they were fewer and much smaller than those of Cx26. These data demonstrated distinct differences between Cx43 and Cx26 in expression and localization in the cochlea. In addition, the area of overlap of zonula occludens-1 (ZO-1) immunolabeling with Cx43-positive spots was small, whereas it was fairly large with Cx26-positive spots in the cochlear lateral wall, suggesting that the differences are not associated with the structural difference between carboxyl terminals, i.e., those of Cx43 possess sequences for binding to ZO-1, whereas those of Cx26 lack these binding sequences.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 826 ◽  
Author(s):  
Anthony J. Hayes ◽  
James Melrose

This study has identified keratan sulfate in fetal and adult rat spinal cord and vertebral connective tissues using the antibody BKS-1(+) which recognizes a reducing terminal N-acetyl glucosamine-6-sulfate neo-epitope exposed by keratanase-I digestion. Labeling patterns were correlated with those of lumican and keratocan using core protein antibodies to these small leucine rich proteoglycan species. BKS-1(+) was not immunolocalized in fetal spinal cord but was apparent in adult cord and was also prominently immunolocalized to the nucleus pulposus and inner annulus fibrosus of the intervertebral disc. Interestingly, BKS-1(+) was also strongly associated with vertebral body ossification centers of the fetal spine. Immunolocalization of lumican and keratocan was faint within the vertebral body rudiments of the fetus and did not correlate with the BKS-1(+) localization indicating that this reactivity was due to another KS-proteoglycan, possibly osteoadherin (osteomodulin) which has known roles in endochondral ossification. Western blotting of adult rat spinal cord and intervertebral discs to identify proteoglycan core protein species decorated with the BKS-1(+) motif confirmed the identity of 37 and 51 kDa BKS-1(+) positive core protein species. Lumican and keratocan contain low sulfation KS-I glycoforms which have neuroregulatory and matrix organizational properties through their growth factor and morphogen interactive profiles and ability to influence neural cell migration. Furthermore, KS has interactive capability with a diverse range of neuroregulatory proteins that promote neural proliferation and direct neural pathway development, illustrating key roles for keratocan and lumican in spinal cord development.


2009 ◽  
Vol 129 (9) ◽  
pp. 935-939 ◽  
Author(s):  
Shi-Xun Zhong ◽  
Zhao-Hua Liu

1999 ◽  
Vol 25 (4) ◽  
pp. 306-311 ◽  
Author(s):  
J�rgen Lautermann ◽  
H.-G. Frank ◽  
Klaus Jahnke ◽  
Otto Traub ◽  
Elke Winterhager

2004 ◽  
Vol 130 (1-2) ◽  
pp. 68-80 ◽  
Author(s):  
Chenggang Zhang ◽  
Fanwei Meng ◽  
Chunli Wang ◽  
Huiyun Guo ◽  
Ming Fan ◽  
...  

Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 931-941 ◽  
Author(s):  
G. Weinmaster ◽  
V.J. Roberts ◽  
G. Lemke

Notch is a cell surface receptor that mediates a wide variety of cellular interactions that specify cell fate during Drosophila development. Recently, homologs of Drosophila Notch have been isolated from Xenopus, human and rat, and the expression patterns of these vertebrate proteins suggest that they may be functionally analogous to their Drosophila counterpart. We have now identified a second rat gene that exhibits substantial nucleic and amino acid sequence identity to Drosophila Notch. This gene, designated Notch2, encodes a protein that contains all the structural motifs characteristic of a Notch protein. Thus, mammals differ from Drosophila in having more than one Notch gene. Northern and in situ hybridisation analyses in the developing and adult rat identify distinct spatial and temporal patterns of expression for Notch1 and Notch2, indicating that these genes are not redundant. These results suggest that the great diversity of cell-fate decisions regulated by Notch in Drosophila may be further expanded in vertebrates by the activation of distinct Notch proteins.


1998 ◽  
Vol 275 (1) ◽  
pp. R227-R233 ◽  
Author(s):  
James A. McKanna ◽  
Ming-Zhi Zhang ◽  
Jun-Ling Wang ◽  
H.-F. Cheng ◽  
Raymond C. Harris

Prostaglandins, lipoid substances discovered in human semen as modulators of uterine muscle contractility, are known to play significant roles in virtually all mammalian organ systems, but their male reproductive functions are unclear. Cyclooxygenase, the rate-limiting enzyme in prostaglandin synthesis, occurs in two isoforms distinguished on the basis of constitutive (COX-1) or inducible (COX-2) expression patterns in mammalian tissues. However, in the adult rat male reproductive system, immunohistochemistry and Western and Northern analysis showed that COX-2 is the predominant isoform and is heavily localized to the epithelium of the distal vas deferens, where constitutive expression is manyfold greater than in any other organs of the body. COX-2 is not detected in the proximal one-half of the vas nor in the testis, epididymis, seminal vesicles, or prostate. Elimination of luminal sperm by vasectomy does not affect COX-2 levels, whereas castration severely depletes COX-2 and androgen replacement after castration restores COX-2, indicating that COX-2 expression in the vas is androgen dependent. Because the distal vas also comprises an extensive submucosal venous plexus connected to the penile corpora cavernosa, prostaglandins from the vas may play a role in erection.


Sign in / Sign up

Export Citation Format

Share Document