Distinct expression patterns of Eph receptors and ephrins relate to the structural organization of the adult rat peripheral vestibular system

2000 ◽  
Vol 12 (5) ◽  
pp. 1599-1616 ◽  
Author(s):  
Tatsuo Matsunaga ◽  
Mark I. Greene ◽  
James G. Davis
Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1031
Author(s):  
Umut Toprak ◽  
Cansu Doğan ◽  
Dwayne Hegedus

Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.


Development ◽  
2001 ◽  
Vol 128 (6) ◽  
pp. 895-906
Author(s):  
B. Knoll ◽  
K. Zarbalis ◽  
W. Wurst ◽  
U. Drescher

We have investigated the role of the Eph family of receptor tyrosine kinases and their ligands in the establishment of the vomeronasal projection in the mouse. Our data show intriguing differential expression patterns of ephrin-A5 on vomeronasal axons and of EphA6 in the accessory olfactory bulb (AOB), such that axons with high ligand concentration project onto regions of the AOB with high receptor concentration and vice versa. These data suggest a mechanism for development of this projection that is the opposite of the repellent interaction between Eph receptors and ligands observed in other systems. In support of this idea, when given the choice of whether to grow on lanes containing EphA-F(c)/laminin or F(c)/laminin protein (in the stripe assay), vomeronasal axons prefer to grow on EphA-F(c)/laminin. Analysis of ephrin-A5 mutant mice revealed a disturbance of the topographic targeting of vomeronasal axons to the AOB. In summary, these data, which are derived from in vitro and in vivo experiments, indicate an important role of the EphA family in setting up the vomeronasal projection.


1995 ◽  
Vol 15 (9) ◽  
pp. 4921-4929 ◽  
Author(s):  
A D Bergemann ◽  
H J Cheng ◽  
R Brambilla ◽  
R Klein ◽  
J G Flanagan

The Eph receptors are the largest known family of receptor tyrosine kinases and are notable for distinctive expression patterns in the nervous system and in early vertebrate development. However, all were identified as orphan receptors, and only recently have there been descriptions of a corresponding family of ligands. We describe here a new member of the Eph ligand family, designated ELF-2 (Eph ligand family 2). The cDNA sequence for mouse ELF-2 indicates that it is a transmembrane ligand. It shows closest homology to the other known transmembrane ligand in the family, ELK-L/LERK-2/Cek5-L, with 57% identity in the extracellular domain. There is also striking homology in the cytoplasmic domain, including complete identity of the last 33 amino acids, suggesting intracellular interactions. On cell surfaces, and in a cell-free system, ELF-2 binds to three closely related Eph family receptors, Elk, Cek10 (apparent ortholog of Sek-4 and HEK2), and Cek5 (apparent ortholog of Nuk/Sek-3), all with dissociation constants of approximately 1 nM. In situ hybridization of mouse embryos shows ELF-2 RNA expression in a segmental pattern in the hindbrain region and the segmenting mesoderm. Comparable patterns have been described for Eph family receptors, including Sek-4 and Nuk/Sek-3, suggesting roles for ELF-2 in patterning these regions of the embryo.


2000 ◽  
Vol 113 (10) ◽  
pp. 1793-1802 ◽  
Author(s):  
S. Orsulic ◽  
R. Kemler

E-cadherin is the main cell adhesion molecule of early embryonic and adult epithelial cells. Downregulation of E-cadherin is associated with epithelial-mesenchymal transition during embryonic mesoderm formation and tumor progression. To identify genes whose expression is affected by the loss of E-cadherin, we compared mRNA expression patterns between wild-type and E-cadherin null mutant embryonic stem (ES) cells. We found that expression of several Eph receptors and ephrins is dependent on E-cadherin. Rescue of E-cadherin null ES cells with E-cadherin cDNA restores the wild-type expression pattern of Eph family members. Rescue of E-cadherin null ES cells with N-cadherin cDNA does not restore the wild-type expression pattern, indicating that the regulation of differential expression of Eph family members is specific to E-cadherin. Constitutive ectopic expression of E-cadherin in non-epithelial NIH3T3 cells results in the production of the EphA2 receptor. In epithelial cells, E-cadherin is required for EphA2 receptor localization at cell-cell contacts; in the absence of functional E-cadherin, EphA2 localizes to the perinuclear region. Our results indicate that E-cadherin may be directly or indirectly required for the membrane localization of Eph receptors and their membrane-bound ligands.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 826 ◽  
Author(s):  
Anthony J. Hayes ◽  
James Melrose

This study has identified keratan sulfate in fetal and adult rat spinal cord and vertebral connective tissues using the antibody BKS-1(+) which recognizes a reducing terminal N-acetyl glucosamine-6-sulfate neo-epitope exposed by keratanase-I digestion. Labeling patterns were correlated with those of lumican and keratocan using core protein antibodies to these small leucine rich proteoglycan species. BKS-1(+) was not immunolocalized in fetal spinal cord but was apparent in adult cord and was also prominently immunolocalized to the nucleus pulposus and inner annulus fibrosus of the intervertebral disc. Interestingly, BKS-1(+) was also strongly associated with vertebral body ossification centers of the fetal spine. Immunolocalization of lumican and keratocan was faint within the vertebral body rudiments of the fetus and did not correlate with the BKS-1(+) localization indicating that this reactivity was due to another KS-proteoglycan, possibly osteoadherin (osteomodulin) which has known roles in endochondral ossification. Western blotting of adult rat spinal cord and intervertebral discs to identify proteoglycan core protein species decorated with the BKS-1(+) motif confirmed the identity of 37 and 51 kDa BKS-1(+) positive core protein species. Lumican and keratocan contain low sulfation KS-I glycoforms which have neuroregulatory and matrix organizational properties through their growth factor and morphogen interactive profiles and ability to influence neural cell migration. Furthermore, KS has interactive capability with a diverse range of neuroregulatory proteins that promote neural proliferation and direct neural pathway development, illustrating key roles for keratocan and lumican in spinal cord development.


2010 ◽  
Vol 265 (1-2) ◽  
pp. 77-82 ◽  
Author(s):  
Wen-Hung Wang ◽  
Jiann-Jou Yang ◽  
Yen-Chun Lin ◽  
Jen-Tsung Yang ◽  
Shuan-Yow Li

2004 ◽  
Vol 130 (1-2) ◽  
pp. 68-80 ◽  
Author(s):  
Chenggang Zhang ◽  
Fanwei Meng ◽  
Chunli Wang ◽  
Huiyun Guo ◽  
Ming Fan ◽  
...  

Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 931-941 ◽  
Author(s):  
G. Weinmaster ◽  
V.J. Roberts ◽  
G. Lemke

Notch is a cell surface receptor that mediates a wide variety of cellular interactions that specify cell fate during Drosophila development. Recently, homologs of Drosophila Notch have been isolated from Xenopus, human and rat, and the expression patterns of these vertebrate proteins suggest that they may be functionally analogous to their Drosophila counterpart. We have now identified a second rat gene that exhibits substantial nucleic and amino acid sequence identity to Drosophila Notch. This gene, designated Notch2, encodes a protein that contains all the structural motifs characteristic of a Notch protein. Thus, mammals differ from Drosophila in having more than one Notch gene. Northern and in situ hybridisation analyses in the developing and adult rat identify distinct spatial and temporal patterns of expression for Notch1 and Notch2, indicating that these genes are not redundant. These results suggest that the great diversity of cell-fate decisions regulated by Notch in Drosophila may be further expanded in vertebrates by the activation of distinct Notch proteins.


1999 ◽  
Vol 144 (2) ◽  
pp. 361-371 ◽  
Author(s):  
Michael Buchert ◽  
Stefan Schneider ◽  
Virginia Meskenaite ◽  
Mark T. Adams ◽  
Eli Canaani ◽  
...  

The AF-6/afadin protein, which contains a single PDZ domain, forms a peripheral component of cell membranes at specialized sites of cell–cell junctions. To identify potential receptor-binding targets of AF-6 we screened the PDZ domain of AF-6 against a range of COOH-terminal peptides selected from receptors having potential PDZ domain-binding termini. The PDZ domain of AF-6 interacts with a subset of members of the Eph subfamily of RTKs via its COOH terminus both in vitro and in vivo. Cotransfection of a green fluorescent protein-tagged AF-6 fusion protein with full-length Eph receptors into heterologous cells induces a clustering of the Eph receptors and AF-6 at sites of cell–cell contact. Immunohistochemical analysis in the adult rat brain reveals coclustering of AF-6 with Eph receptors at postsynaptic membrane sites of excitatory synapses in the hippocampus. Furthermore, AF-6 is a substrate for a subgroup of Eph receptors and phosphorylation of AF-6 is dependent on a functional kinase domain of the receptor. The physical interaction of endogenous AF-6 with Eph receptors is demonstrated by coimmunoprecipitation from whole rat brain lysates. AF-6 is a candidate for mediating the clustering of Eph receptors at postsynaptic specializations in the adult rat brain.


1998 ◽  
Vol 275 (1) ◽  
pp. R227-R233 ◽  
Author(s):  
James A. McKanna ◽  
Ming-Zhi Zhang ◽  
Jun-Ling Wang ◽  
H.-F. Cheng ◽  
Raymond C. Harris

Prostaglandins, lipoid substances discovered in human semen as modulators of uterine muscle contractility, are known to play significant roles in virtually all mammalian organ systems, but their male reproductive functions are unclear. Cyclooxygenase, the rate-limiting enzyme in prostaglandin synthesis, occurs in two isoforms distinguished on the basis of constitutive (COX-1) or inducible (COX-2) expression patterns in mammalian tissues. However, in the adult rat male reproductive system, immunohistochemistry and Western and Northern analysis showed that COX-2 is the predominant isoform and is heavily localized to the epithelium of the distal vas deferens, where constitutive expression is manyfold greater than in any other organs of the body. COX-2 is not detected in the proximal one-half of the vas nor in the testis, epididymis, seminal vesicles, or prostate. Elimination of luminal sperm by vasectomy does not affect COX-2 levels, whereas castration severely depletes COX-2 and androgen replacement after castration restores COX-2, indicating that COX-2 expression in the vas is androgen dependent. Because the distal vas also comprises an extensive submucosal venous plexus connected to the penile corpora cavernosa, prostaglandins from the vas may play a role in erection.


Sign in / Sign up

Export Citation Format

Share Document